Python/Numpy的一些高级用法(个人笔记)

Python/numpy 常用与高级用法总结(实时更新)
开始在商汤做算法研究员后,工作中要写大量python,但因为一直以来习惯C/C++的写法,经常在程序中使用for循环。然而python作为动态语言,不像C++有编译器能对大循环有全局的智能并行优化,而是会低效率地反复对循环部分内容逐行编译运行,导致在一些大循环里速度极慢,也导致我刚开始一段时间写的代码一直被同事和老板吐槽。

后来才慢慢学会了用numpy,numpy的功能非常丰富,在算法实现中大部分的需求都有已经封装好的函数,且都是做好底层加速优化的,运行速度也非常快。
在研究员的工作中,numpy用的好坏直接决定了代码的质量与工作效率的高低,因此写了这篇博客,来记录平时工作中发现的一些好用的python/numpy用法。

1、求数列中,数值等于某个值的所有数字的位置:np.nonzero

a=np.array([0, 1, 2, 1, 1, 3, 4, 1, 5])
np.nonzero(a==1)
Out[15]: (array([1, 3, 4, 7], dtype=int64),)  #就找到了array a中所有等于1的元素位置

nonzero是很常用的函数,比如对一批数据聚类后,得到一个prediction label列表,我们希望把聚为同一类的对象拿出来看看,就要用到这个nonzero找到同为某个label的元素在list中的位置)
要注意直接使用nonzero返回的是一个tuple类型,如果希望得到array结果,记得加上[0]的索引

np.nonzero(a==1)[0]
Out[16]: array([1, 3, 4, 7], dtype=int64)

2、np.intersect1d #待更新
3、np.argwhere
4、np.where
5、np.argsort
6、np.sum
7、np.mean np.mean(axis=1)
8、np.newaxis
9、Np.where(np.isin)

2、生成空的带有一定shape的array,np.empty:
很多时候需要设置一个起始的空数组,在后面循环的时候将新的数组合并进来,但是直接np.array([])生成的数组如果直接和后续数据用拼接concatenate操作的话,会报错dimension对不上,

>>> a
array([], dtype=float64)
>>> b
array([[1, 2],
       [2, 5]])
>>> np.concatenate((a,b))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: all the input arrays must have same number of dimensions

此时就需要用np.empty,就能生成带有一定shape的空array,避免维度不对应的报错。

>>> a=np.empty((0,2),np.int)

生成升序数列np.arrange

np.arange(4)
Out[5]: array([0, 1, 2, 3])

等分数组np.split
不过只能均分一个数组,如果需要按个数分割数组,可能还得自行用for循环。

np.split(np.arange(8),4)
Out[19]: [array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7])]

python部分
assert报错函数
assert(条件)
如果条件满足,则正常运行,如果不满足,则报错退出

打印日志sys.stdout(建议Logger写法)
如果想要同时输出日志到控制台与Log文件中,可以先定义logger类,包含两个成员console,out_dir,

class logger(object):
    def __init__(self, fpath):
        self.console = sys.stdout
        self.file = fpath

然后在主程序中让sys.stdout等于此对象即可

import sys
sys.stdout = logger(‘your log path’)

绝对引入
为了防止一些自己写的脚本与系统默认的包重名,导致无法引入的情况,比如:
你的脚本目录有一个文件名为math,你想要import这个math文件,然而由于python库中有同名的math包,这样总是会优先import系统默认的math,此时就需要声明绝对引入,这样引入自己脚本时,就需要明确写出完整的from路径,而系统的包则直接import即可

from __future__ import absolute_import

内存回收
虽说python通常不需要内存管理,当一块内存没有变量指向的引用时,python会有某种逻辑在一定条件下回自动回收这块内存,然而使用python脚本处理大规模数据时,单纯使用del 去删除引用,内存块不会被即时回收掉,导致一定概率内存溢出从而进程被kill。

a=np.array([1, 2, 3, 4])
id(a)
Out[35]: 1812623222304     #获得地址
ctypes.cast(1812623222304,ctypes.py_object).value    #取得地址指向的内存
Out[36]: array([1, 2, 3, 4])
del a        #删除内存指向的指针,让这块内存没有指针指向
ctypes.cast(1812623222304,ctypes.py_object).value
Out[38]: array([1, 2, 3, 4])          #结果发现a被del了,然而这块内存依然没有释放

实际上,经过个人的测试,python的自动内存回收逻辑大概是:当系统内存不停被占用,直到可用内存低于某一临界值后,才会开始内存回收,对没有引用的内存块执行回收动作;

然而处理超大规模数据时,往往内存来不及回收完,大量读入的新数据导致爆内存,从而进程被kill,此时可以考虑手动回收内存(gc模块),就能及时回收内存

import gc
a=np.array([1, 2, 3, 4])
del a
gc.collect()

args 参数说明:
action='store_true'
parser.add_argument('--t', help=' ', action='store_true', default=False)
即当运行时,此变量有传参,就设为True

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容