Python迭代器和生成器

1、List Conprehensions

列表生成式是python中内置的用来创建list的表达式、
如果我们要生成简单的list可以直接使用range函数来完成。

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>

但是有时候我们要生成复杂的list怎么办呢?比如我们生成一个[1^2, 2^2, 3^2...]的list。

>>> my_list = []
>>> for item in range(10):
...     my_list.append(item * item)
...
>>> my_list
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>>

上面的代码都不够简洁,python中的列表生成式可以一行解决。

>>> [x * x for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>>

在书写生成式表达式时,将要生成的元素放在前面,后面是for循环。
还可以在创建列表的同时进行简单的过滤。

>>> [x * x for x in range(10) if x%2 == 0]
[0, 4, 16, 36, 64]
>>>

还可以实现全排列

>>> [(x,y) for x in '123' for y in '456']
[('1', '4'), ('1', '5'), ('1', '6'), ('2', '4'), ('2', '5'), ('2', '6'), ('3', '4'), ('3', '5'), ('3', '6')]
>>>

2、Iterables

当我们创建了一个列表,我们可以依次遍历它,依次遍历的过程就是迭代。

>>> my_list = [1, 2, 3]
>>> for i in my_list:
...     print i
...
1
2
3

my_list就是一个可迭代对象,当我们使用上面说的列表生成式创建一个列表时,该列表也是一个可迭代的。

>>> my_list = [x * x for x in range(3)]
>>> for i in my_list:
...     print i
...
0
1
4

对于任何可迭代的对象都可以使用for in来进行迭代。
但是这样做有一个缺点就是:当我们的数据非常多的时候比如一个大列表,这个列表将会被读到内存中,会占用非常多的内存,有时候硬件是达不到的。

3、 Generators

对一个包含大量数据的列表,不仅占用很大的内存,如果我们使用到的就只有某一小部分数据就会导致内存的浪费。
如果列表中的元素可以根据某种算法推导出来,而不是将所有元素都存放在列表中,从而可以节省很多内存空间。这样一边循环一边计算的机制叫做生成器(Generator)。
创建一个Generator直接可以将上面的列表生成式的[]换成()就可以了。python中提供了生成器表达式,它是对列表和生成器的一种泛化,生成器表达式在运行的时候,并不会将整个输出序列都呈现出来,而是会估值为迭代器,这个迭代器每次可以根据生成器表达式产生一项数据。

>>> L1 = [x * x for x in range(10)]
>>> L2 = (x * x for x in range(10))
>>> L1
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> L2
<generator object <genexpr> at 0x000000000347F7E0>
>>>

从打印结果可以看出L2是一个Generator,可以使用next()方法打印每一个元素。

>>> L2.next()
0
>>> L2.next()
1
>>> L2.next()
4
>>> L2.next()
9
>>> L2.next()
16
>>> L2.next()
....
>>> L2.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>>

如果没有元素了就会抛出异常。
Generator也是可迭代的,但是只能迭代一次。

>>> L2 = (x * x for x in range(10))
>>> for i in L2:
...     print i
...
0
1
4
9
16
25
36
49
64
81
>>>

4、生成器和迭代器区别

迭代器是一个更普遍的概念,如果一个类中有next()方法和返回自身return self__iter__()方法,这个类的对象就是一个Iterator
所有的生成器是一个迭代器,但是反过来就不是。生成器通过调用具有一个或多个yield表达式(在Python 2.5和更早版本中的yield语句)的函数构建。

>>> def squares(start, stop):
...     for i in range(start, stop):
...             yield i * i
...
>>>
>>> generator = squares(1, 3)
>>> generator
<generator object squares at 0x000000000347F7E0>
>>>

当然还可以使用生成器表达式直接生成一个Generator。
但是有时候你需要一个定制的迭代器,定义一个类,该类实现next() 和 __iter__()方法就可以。

class Squares(object):
    def __init__(self, start, stop):
        self.start = start
        self.stop = stop
    def __iter__(self):
        return self
    def next(self):
        if self.start >= self.stop:
            raise StopIteration
        current = self.start * self.start
        self.start += 1
        return current
5、使用yield关键字创建生成器

如果一个函数包含了yield关键字,这个函数就是一个生成器。但是Generator和函数的执行流程是不一样的。函数是顺序执行,遇到return语句或者执行完毕后就返回,如果变成了Generator后,每次调用next()函数开始执行,遇到yield返回,下次接着从上次返回位置进行执行。

>>> def fun():
...     print 'run 1'
...     yield 1
...     print 'run 2'
...     yield 2
...
>>> g = fun()
>>> g.next()
run 1
1
>>> g.next()
run 2
2
>>> g.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>>

我们使用关键字yield定义了一个Generator,在执行的时候,遇到yield关键字就会返回,再次调用就从上次返回的地方开始。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容