【2】时间复杂度和空间复杂度

效率

事后统计方法:这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。
但这种方法显然是有很大缺陷的:

  1. 必须依据算法事先编制好测试程序,通常需要花费大量时间和精力,完了发觉测试的是糟糕的算法,那不是功亏一篑?赔了娘子又折兵?
  2. 不同测试环境差别不是一般的大!

事前分析估算方法:在计算机程序编写前,依据统计方法对算法进行估算。
经过总结,我们发现一个高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:

  1. 算法采用的策略,方案
  2. 编译产生的代码质量
  3. 问题的输入规模
  4. 机器执行指令的速度

由此可见,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间依赖于算法的好坏和问题的输入规模。(所谓的问题输入规模是指输入量的多少)

高斯算法示例分析

普通算法:

int i, sum = 0, n = 100;   // 执行1次
for( i=1; i <= n; i++ )    // 执行了n+1次
{
    sum = sum + i;          // 执行n次
}

高斯算法:

int sum = 0, n = 100;     // 执行1次
sum = (1+n)*n/2;          // 执行1次

第一种算法执行了1+(n+1)+n=2n+2次。
第二种算法,是1+1=2次
如果我们把循环看做一个整体,忽略头尾判断的开销,那么这两个算法其实就是n和1的差距。
问题: 循环判断在算法1里边执行了n+1次,看起来是个不小的数量,凭什么说忽略就能忽略?

再来一个例子

int i, j, x=0, sum=0, n=100;
for( i=1; i <= n; i++ ) {
    for( j=1; j <= n; j++ ) {
        x++;
        sum = sum + x;
    }
}

这个例子中,循环条件i从1到100,每次都要让j循环100次,如果非常较真的研究总共精确执行次数,那是非常累的。

另一方面,我们研究算法的复杂度,侧重的是研究算法随着输入规模扩大增长量的一个抽象,而不是精确地定位需要执行多少次,因为如果这样的话,我们就又得考虑回编译器优化等问题,然后,然后就永远也没有然后了!

所以,对于这个例子的算法,我们可以果断判定需要执行100^2次。

函数的渐进增长

测试一

假设两个算法的输入规模都是n,算法A要做2n+3次操作,你可以这么理解:先执行n次的循环,执行完成后再有一个n次的循环,最后有3次运算。
算法B要做3n+1次操作,理解同上,你觉得它们哪一个更快些呢?

测试一.png

当n=1时,算法A1效率不如算法B1,当n=2时,两者效率相同;当n>2时,算法A1就开始优于算法B1了,随着n的继续增加,算法A1比算法B1逐步拉大差距。所以总体上算法A1比算法B1优秀。

函数的渐近增长:给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于g(n)。
从刚才的对比中我们还发现,随着n的增大,后面的+3和+1其实是不影响最终的算法变化曲线的。

测试二

第二个测试,算法C是4n+8,算法D是2n^2+1。

测试二

我们观察发现,哪怕去掉与n相乘的常数,两者的结果还是没有改变,算法C2的次数随着n的增长,还是远小于算法D2。
也就是说,与最高次项相乘的常数并不重要,也可以忽略。

测试三

第三个测试,算法E是2n^2 + 3n+1,算法F是2n^3+3n+1。

测试三

我们通过观察又发现,最高次项的指数大的,函数随着n的增长,结果也会变得增长特别快。

测试四

测试四

这组数据我们看得很清楚,当n的值变得非常大的时候,3n+1已经没法和2n^2的结果相比较,最终几乎可以忽略不计。而算法G在跟算法I基本已经重合了。

结论

于是我们可以得到这样一个结论,判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注主项(最高项)的阶数。

注意,判断一个算法好不好,我们只通过少量的数据是不能做出准确判断的,很容易以偏概全。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容

  • 算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做 两项分析。第一是从数学上证明算法的正确性,这...
    Explorer_Mi阅读 1,441评论 0 1
  • 通常,对于一个给定的算法,我们要做 两项分析。第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关...
    西域小码阅读 1,838评论 0 11
  • 0,时间复杂度是指执行算法所需要的计算工作量 1,在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语...
    Santiagogogo阅读 859评论 0 4
  • 曾经喜欢素颜,如今不化妆跟要裸奔似的不习惯。曾经平底运动鞋,如今高跟皮鞋。曾经不能接受的,等接触之后渐渐变成...
    笨鸟小姐阅读 159评论 0 0
  • 徐州去过三次吧,第一次去徐州和室友一起去的(汪玲那次去合肥了),第二次去徐州和室友和石自立还有潘放一起去的(一凡那...
    Vpawn阅读 1,067评论 6 7