转载请注明原文链接:http://www.jianshu.com/p/b0e7c92ecb43
1.前言
最近在看项目代码中,突然冒出这样一个想法:如果在ObjectAnimator动画结束回调函数onAnimationEnd中重新start此动画,是否能达到循环播放动画呢?其实通过setRepeatCount()和setRepeatMode()函数配合使用也是可以实现动画循环播放的效果,但是出于好奇,我还是想通过代码实现来验证自己的想法,代码如下:
final ObjectAnimator objectAnimator = ObjectAnimator.ofFloat(target, "scaleX", 1.0f, 2.0f)
.setDuration(5000);
objectAnimator.addListener(new Animator.AnimatorListener() {
@Override
public void onAnimationStart(Animator animation) {
Log.d("MainActivity", "onAnimationStart");
}
@Override
public void onAnimationEnd(Animator animator) {
Log.d("MainActivity", "onAnimationEnd");
objectAnimator.start();
}
@Override
public void onAnimationCancel(Animator animation) {
Log.d("MainActivity", "onAnimationCancel");
}
@Override
public void onAnimationRepeat(Animator animation) {
Log.d("MainActivity", "onAnimationRepeat");
}
});
objectAnimator.start();
通过代码实验,惊奇地发现,动画并没有达到我预期的效果,这个渐显动画只是播放了两次而已,且在第二次动画过程中没有onAnimationStart和onAnimationEnd方法的回调。
这是为什么呢?由此激起了我对ObjectAnimator源码实现的兴趣。在这边博客中,主要分析ObjectAnimator动画实现机制以及ObjectAnimator在Duration时间内是如何更新Target属性值,希望对感兴趣的同学有一些帮助。
2.基本使用
ObjectAnimator
.ofFloat(button, "alpha", 0.0f, 1.0f)
.setDuration(5000)
.start();
3.深入分析
3.1 从ObjectAnimator.ofFloat()开始
public static ObjectAnimator ofFloat(Object target, String propertyName, float... values) {
ObjectAnimator anim = new ObjectAnimator(target, propertyName);
anim.setFloatValues(values);
return anim;
}
这个静态方法会创建一个ObjectAnimator对象,在构造时同时设置属性动画的目标target和作用于target的属性名propertyName,根据上面的例子,target为button,propertyName为alpha。
3.1.1 ObjectAnimator构造函数
private ObjectAnimator(Object target, String propertyName) {
setTarget(target);
setPropertyName(propertyName);
}
在ObjectAnimator构造函数中分别调用了setTarget和setPropertyName方法
3.1.2 下面我们来分析ObjectAnimator.setTarget()方法
@Override
public void setTarget(@Nullable Object target) {
final Object oldTarget = getTarget();
if (oldTarget != target) {
if (isStarted()) {
cancel();
}
mTarget = target == null ? null : new WeakReference<Object>(target);
// New target should cause re-initialization prior to starting
// 记录尚未初始化,ValueAnimator的初始化标志位
mInitialized = false;
}
}
从源码中,我们可以分析出两点:
- 当oldTarget不等于target,且已经调用了start()方法使得mStarted标志位为true时,需要先cancel掉此动画,进入ValueAnimator.cancel()函数,你会发现,系统会先遍历mLiseners调用AnimatorLisener.onAnimatorCancel()函数,接着调用ObjectAnimator.endAnimation函数,最后遍历mLiseners调用AnimatorLisener.onAnimatorEnd()函数。这里矫正了我之前的一个误区,不知道你之前是否也这样的误区,在调用ObjectAnimtor.cancel()动画时,不仅仅会回调AnimatorLisener.onAnimatorCancel()方法,还会回调AnimatorLisener.onAnimatorEnd()方法;
- mTarget是一个软引用,而不是一个强引用哦,这样ObjectAnimator就不会持有View的引用,不会影响Activity的正常回收,从而不会引起Activity内存泄漏。
3.1.3 接着分析ObjectAnimator.setPropertyName()方法
回到ObjectAnimator构造函数中,setPropertyName方法设置属性名称,即为alpha
// 设置属性名称,也就是上面设置的”alpha"
public void setPropertyName(@NonNull String propertyName) {
// mValues could be null if this is being constructed piecemeal. Just record the
// propertyName to be used later when setValues() is called if so.
// mValues是一个数组,用于保存PropertyValuesHolder
if (mValues != null) {
// 属性值得更新操作委托给PropertyValuesHolder进行
// Animator只进行数值计算
PropertyValuesHolder valuesHolder = mValues[0];
String oldName = valuesHolder.getPropertyName();
// 更新第一个PropertyValuesHolder的PropertyName
valuesHolder.setPropertyName(propertyName);
mValuesMap.remove(oldName);
mValuesMap.put(propertyName, valuesHolder);
}
mPropertyName = propertyName;
// New property/values/target should cause re-initialization prior to starting
// 记录尚未初始化,ValueAnimator的标志位
mInitialized = false;
}
回到ObjectAnimator.OfFloat()方法中,还有一步就是调用ObjectAnimator.setFloatValues()方法
3.1.4 ObjectAnimator.setFloatValues()方法
@Override
public void setFloatValues(float... values) {
// 第一次调用时,values为null
if (mValues == null || mValues.length == 0) {
// No values yet - this animator is being constructed piecemeal. Init the values with
// whatever the current propertyName is
// 我们设置了mPropertyName,在这里mProperty为null
if (mProperty != null) {
setValues(PropertyValuesHolder.ofFloat(mProperty, values));
} else {
setValues(PropertyValuesHolder.ofFloat(mPropertyName, values));
}
} else {
super.setFloatValues(values);
}
}
在setValues之前先调用PropertyValuesHolder.ofFloat(mPropertyName, values)方法初始化PropertyValuesHolder对象
3.1.5 PropertyValuesHolder.ofFloat方法
// 静态方法构造FloatPropertyValuesHolder
public static PropertyValuesHolder ofFloat(String propertyName, float... values) {
return new FloatPropertyValuesHolder(propertyName, values);
}
调用FloatPropertyValuesHolder构造方法
// FloatPropertyValuesHolder构造方法
public FloatPropertyValuesHolder(String propertyName, float... values) {
super(propertyName);
// 调用FloatPropertyValuesHolder.setFloatValues方法
setFloatValues(values);
}
调用FloatPropertyValuesHolder的setFloatValues()方法
// FloatPropertyValuesHolder
@Override
public void setFloatValues(float... values) {
// 调用PropertyValuesHolder.setFloatValues方法
super.setFloatValues(values);
mFloatKeyframes = (Keyframes.FloatKeyframes) mKeyframes;
}
调用父类PropertyValuesHolder的setFloatValues()方法初始化关键帧集合
// PropertyValuesHolder.setFloatValues
public void setFloatValues(float... values) {
// 记录mValueType值,便于使用反射方式遍历获取目标target对应的set和get方法
// 具体可以看getPropertyFunction方法
mValueType = float.class;
mKeyframes = KeyframeSet.ofFloat(values);
}
然后设置mKeyframes,KeyFrame是属性动画中的关键帧,通过设置关键帧来保证动画执行的时序性
3.1.6 KeyframeSet.ofFloat()方法
// 静态方法KeyframeSet.ofFloat
public static KeyframeSet ofFloat(float... values) {
boolean badValue = false;
int numKeyframes = values.length;
// 至少初始化两个关键帧
FloatKeyframe keyframes[] = new FloatKeyframe[Math.max(numKeyframes,2)];
// 如果values只有一个数值时,那么只有开始和结束这两个关键帧
if (numKeyframes == 1) {
keyframes[0] = (FloatKeyframe) Keyframe.ofFloat(0f);
// 当values只有一个数值时,作为结束帧
keyframes[1] = (FloatKeyframe) Keyframe.ofFloat(1f, values[0]);
// 判断values中的数值是否是有效值
if (Float.isNaN(values[0])) {
badValue = true;
}
} else {
// 给values中的每一个数值都设置一个关键帧
keyframes[0] = (FloatKeyframe) Keyframe.ofFloat(0f, values[0]);
for (int i = 1; i < numKeyframes; ++i) {
keyframes[i] =
(FloatKeyframe) Keyframe.ofFloat((float) i / (numKeyframes - 1), values[i]);
if (Float.isNaN(values[i])) {
badValue = true;
}
}
}
// 当values数值不是有效值时,打印出日志,但是不做其他处理
if (badValue) {
Log.w("Animator", "Bad value (NaN) in float animator");
}
return new FloatKeyframeSet(keyframes);
}
接下来我们看一下关键帧Keyframe是如何创建的
public static Keyframe ofFloat(float fraction, float value) {
return new FloatKeyframe(fraction, value);
}
在FloatKeyFrame构造函数中保存fraction和value等值
FloatKeyframe(float fraction, float value) {
mFraction = fraction;
mValue = value;
mValueType = float.class;
mHasValue = true;
}
KeyFrame其实只是对当前的fraction和value做了一个保存作用,mValueType就是根据不同类型的KeyFrame设置不同的值,这里设置了float.class值
KeyFrame下面,我们接着看KeyframeSet.ofFloat方法,最终会创建一个关键帧的集合FloatKeyframeSet
public FloatKeyframeSet(FloatKeyframe... keyframes) {
// 调用父类KeyframeSet的构造方法
super(keyframes);
}
public KeyframeSet(Keyframe... keyframes) {
mNumKeyframes = keyframes.length;
// immutable list
mKeyframes = Arrays.asList(keyframes);
mFirstKeyframe = keyframes[0];
mLastKeyframe = keyframes[mNumKeyframes - 1];
mInterpolator = mLastKeyframe.getInterpolator();
}
ObjectAnimator.ofFloat的过程就结束了,下面我们一起来看其他方法
3.2 分析ObjectAnimator.setDuration()方法
setDuration()用于设置动画执行的时间,这个方法比较简单
public ValueAnimator setDuration(long duration) {
// 检查duration,小于零则抛出异常
if (duration < 0) {
throw new IllegalArgumentException("Animators cannot have negative duration: " +
duration);
}
// 使用mUnscaledDuration保存未做缩放的动画执行时间
mUnscaledDuration = duration;
// 计算经过缩放的动画执行时间,默认情况下mDuration=duration
updateScaledDuration();
return this;
}
3.3 ObjectAnimator.setInterpolator()方法
setInterpolator()设置动画执行时使用到的插值器,默认的插值器是带有加减速度的插值器
// The time interpolator to be used if none is set on the animation
private static final TimeInterpolator sDefaultInterpolator =
new AccelerateDecelerateInterpolator();
@Override
public void setInterpolator(TimeInterpolator value) {
if (value != null) {
mInterpolator = value;
} else {
// value为空时,使用线性插值器
mInterpolator = new LinearInterpolator();
}
}
3.4 接下分析ObjectAnimator.start()方法
start()方法是ObjectAnimator中最重要的一个方法,控制着属性动画的启动,这里是见证奇迹的地方,不管你会不会激动,反正我是激动了。
3.4.1 从ObjectAnimator.start()方法开始
@Override
public void start() {
// See if any of the current active/pending animators need to be canceled
AnimationHandler handler = sAnimationHandler.get();
// 第一次启动,handler为空
if (handler != null) {
// 通过遍历mAnimations队列来cancel当前动画
int numAnims = handler.mAnimations.size();
for (int i = numAnims - 1; i >= 0; i--) {
if (handler.mAnimations.get(i) instanceof ObjectAnimator) {
ObjectAnimator anim = (ObjectAnimator) handler.mAnimations.get(i);
if (anim.mAutoCancel && hasSameTargetAndProperties(anim)) {
anim.cancel();
}
}
}
// 通过遍历mPendingAnimations队列来cancel当前动画
numAnims = handler.mPendingAnimations.size();
for (int i = numAnims - 1; i >= 0; i--) {
if (handler.mPendingAnimations.get(i) instanceof ObjectAnimator) {
ObjectAnimator anim = (ObjectAnimator) handler.mPendingAnimations.get(i);
if (anim.mAutoCancel && hasSameTargetAndProperties(anim)) {
anim.cancel();
}
}
}
// 通过遍历mDelayedAnims队列来cancel当前动画
numAnims = handler.mDelayedAnims.size();
for (int i = numAnims - 1; i >= 0; i--) {
if (handler.mDelayedAnims.get(i) instanceof ObjectAnimator) {
ObjectAnimator anim = (ObjectAnimator) handler.mDelayedAnims.get(i);
if (anim.mAutoCancel && hasSameTargetAndProperties(anim)) {
anim.cancel();
}
}
}
}
if (DBG) {
Log.d(LOG_TAG, "Anim target, duration: " + getTarget() + ", " + getDuration());
for (int i = 0; i < mValues.length; ++i) {
PropertyValuesHolder pvh = mValues[i];
Log.d(LOG_TAG, " Values[" + i + "]: " +
pvh.getPropertyName() + ", " + pvh.mKeyframes.getValue(0) + ", " +
pvh.mKeyframes.getValue(1));
}
}
// 转到ValueAnimator的start()方法
super.start();
}
AnimationHandler有三个重要的参数:mAnimations、mPendingAnimations以及mDelayedAnims,具体如下:
- mAnimations是一个用来保存当前正在执行的动画列表,
- mPendingAnimation是一个用来保存已经调用了start(boolean playBackwards)方法加入进来的动画列表,不管是否设置mStartDelay延迟时间,都会加入到此列表中
- mDelayedAnims是一个用来保存设置了mStartDelay延迟时间的动画列表,mStartDelay要大于零
3.4.2 最终调用到ValueAnimator.start(boolean playBackwards)方法
// playBackwards表示是否倒序播放,这里我们传入的是false
private void start(boolean playBackwards) {
if (Looper.myLooper() == null) {
throw new AndroidRuntimeException("Animators may only be run on Looper threads");
}
mReversing = playBackwards;
mPlayingBackwards = playBackwards;
// 此时playBackwards为false,第一次启动动画时mSeekFraction为-1,不会进入
if (playBackwards && mSeekFraction != -1) {
if (mSeekFraction == 0 && mCurrentIteration == 0) {
// special case: reversing from seek-to-0 should act as if not seeked at all
mSeekFraction = 0;
} else if (mRepeatCount == INFINITE) {
mSeekFraction = 1 - (mSeekFraction % 1);
} else {
mSeekFraction = 1 + mRepeatCount - (mCurrentIteration + mSeekFraction);
}
mCurrentIteration = (int) mSeekFraction;
mSeekFraction = mSeekFraction % 1;
}
if (mCurrentIteration > 0 && mRepeatMode == REVERSE &&
(mCurrentIteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
// if we were seeked to some other iteration in a reversing animator,
// figure out the correct direction to start playing based on the iteration
if (playBackwards) {
mPlayingBackwards = (mCurrentIteration % 2) == 0;
} else {
mPlayingBackwards = (mCurrentIteration % 2) != 0;
}
}
int prevPlayingState = mPlayingState;
mPlayingState = STOPPED;
// 在调用start方法之后,mStarted状态改为true
mStarted = true;
mStartedDelay = false;
mPaused = false;
updateScaledDuration(); // in case the scale factor has changed since creation time
AnimationHandler animationHandler = getOrCreateAnimationHandler();
// 把当前动画加入到animationHandler.mPendingAnimation队列中
animationHandler.mPendingAnimations.add(this);
// 此处启动动画,等一下分析
if (mStartDelay == 0) {
// This sets the initial value of the animation, prior to actually starting it running
if (prevPlayingState != SEEKED) {
// 第一次启动,设置当前启动时间为0
setCurrentPlayTime(0);
}
mPlayingState = STOPPED;
mRunning = true;
// 回调AnimatorListener.onAnimationStart()方法通知用户
notifyStartListeners();
}
animationHandler.start();
}
这里代码量有点多,主要是根据是否设置动画循环播放来设置标志位和状态,在start方法中调用ValueAnimator.setCurrentPlayTime()方法来设置动画的播放时间
3.4.3 紧接着进入ValueAnimator.setCurrentPlayTime()方法
// ValueAnimator
public void setCurrentPlayTime(long playTime) {
// mUnscaledDuration就是我们设置的动画执行时间,这里为5000毫秒
// 第一次执行时,我们的playTime传进来就是0
float fraction = mUnscaledDuration > 0 ? (float) playTime / mUnscaledDuration : 1;
// 第一次执行时,fraction=0,调用ValueAnimator.setCurrentFraction()方法
setCurrentFraction(fraction);
}
3.4.4 调用到ValueAnimator.setCurrentFraction()方法
接下来一起进入setCurrentFraction(float fraction)方法
public void setCurrentFraction(float fraction) {
// 接下来马上分析
initAnimation();
// 此时传进来的fraction=0
if (fraction < 0) {
fraction = 0;
}
int iteration = (int) fraction;
// 循环动画时才会进入
if (fraction == 1) {
iteration -= 1;
} else if (fraction > 1) {
if (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE) {
if (mRepeatMode == REVERSE) {
mPlayingBackwards = (iteration % 2) != 0;
}
fraction = fraction % 1f;
} else {
fraction = 1;
iteration -= 1;
}
} else {
mPlayingBackwards = mReversing;
}
mCurrentIteration = iteration;
// 默认情况下,sDurationScale为1.0f,这里mDuration就是我们设置的动画执行时间5000ms
long seekTime = (long) (mDuration * fraction);
// 获取当前动画执行的时间点
long currentTime = AnimationUtils.currentAnimationTimeMillis();
// 计算当前动画已经执行的时长
mStartTime = currentTime - seekTime;
mStartTimeCommitted = true; // do not allow start time to be compensated for jank
if (mPlayingState != RUNNING) {
mSeekFraction = fraction;
mPlayingState = SEEKED;
}
if (mPlayingBackwards) {
fraction = 1f - fraction;
}
animateValue(fraction);
}
从上面的代码分析来看,其中调用到了两个方法,分别是initAnimation()和animateValue(fraction)方法
3.4.5 我们先来看ObjectAnimator.initAnimation()方法
@Override
// ObjectAnimator
void initAnimation() {
// 第一次执行时,mInitialized为false,初始化后该标志位置为true,可以避免多次init
if (!mInitialized) {
// mValueType may change due to setter/getter setup; do this before calling super.init(),
// which uses mValueType to set up the default type evaluator.
final Object target = getTarget();
if (target != null) {
final int numValues = mValues.length;
for (int i = 0; i < numValues; ++i) {
// 执行PropertyValuesHolder的setupSetterAndGetter()方法
mValues[i].setupSetterAndGetter(target);
}
}
super.initAnimation();
}
}
3.4.6 分析PropertyValuesHolder.setupSetterAndGetter()
PropertyValuesHolder.setupSetterAndGetter(Object target)方法,主要是初始化反射方法mSetter和mGetter
// PropertyValuesHolder
void setupSetterAndGetter(Object target) {
mKeyframes.invalidateCache();
// 按照上面的例子,我们设置的是mPropertyName,mProperty为null,不会进去
if (mProperty != null) {
// check to make sure that mProperty is on the class of target
try {
Object testValue = null;
List<Keyframe> keyframes = mKeyframes.getKeyframes();
int keyframeCount = keyframes == null ? 0 : keyframes.size();
for (int i = 0; i < keyframeCount; i++) {
Keyframe kf = keyframes.get(i);
if (!kf.hasValue() || kf.valueWasSetOnStart()) {
if (testValue == null) {
testValue = convertBack(mProperty.get(target));
}
kf.setValue(testValue);
kf.setValueWasSetOnStart(true);
}
}
return;
} catch (ClassCastException e) {
Log.w("PropertyValuesHolder","No such property (" + mProperty.getName() +
") on target object " + target + ". Trying reflection instead");
mProperty = null;
}
}
// We can't just say 'else' here because the catch statement sets mProperty to null.
// mProperty为空,判断get和set方法是否存在
if (mProperty == null) {
Class targetClass = target.getClass();
if (mSetter == null) {
// 查找目标属性的set方法,初始化mSetter方法
setupSetter(targetClass);
}
// 遍历关键帧集合
List<Keyframe> keyframes = mKeyframes.getKeyframes();
int keyframeCount = keyframes == null ? 0 : keyframes.size();
for (int i = 0; i < keyframeCount; i++) {
Keyframe kf = keyframes.get(i);
if (!kf.hasValue() || kf.valueWasSetOnStart()) {
if (mGetter == null) {
// 查找目标属性的get方法,初始化mGetter方法
setupGetter(targetClass);
// mGetter为null时,直接return
if (mGetter == null) {
// Already logged the error - just return to avoid NPE
return;
}
}
try {
// 通过mGetter反射获取属性值
Object value = convertBack(mGetter.invoke(target));
// 初始化关键帧Keyframe的mValue值
kf.setValue(value);
// 设置Keyframe标志位为true,表示已经初始化mValue
kf.setValueWasSetOnStart(true);
} catch (InvocationTargetException e) {
Log.e("PropertyValuesHolder", e.toString());
} catch (IllegalAccessException e) {
Log.e("PropertyValuesHolder", e.toString());
}
}
}
}
}
在上面代码中调用到setupSetter和setupGetter方法,这个两个方法最终都是调用setupSetterOrGetter方法
3.4.7 分析PropertyValuesHolder.setupSetterOrGetter()
// 参数prefix值为“set”或者“get”,在这里valueType为float.class
private Method setupSetterOrGetter(Class targetClass,
HashMap<Class, HashMap<String, Method>> propertyMapMap,
String prefix, Class valueType) {
Method setterOrGetter = null;
// 进行同步锁判断
synchronized(propertyMapMap) {
// Have to lock property map prior to reading it, to guard against
// another thread putting something in there after we've checked it
// but before we've added an entry to it
// 根据targetClass获取HashMap,这个propertyMap是以mPropertyName为key,set或者get方法作为value
// 在这里mPropertyName为"alpha"
HashMap<String, Method> propertyMap = propertyMapMap.get(targetClass);
boolean wasInMap = false;
if (propertyMap != null) {
wasInMap = propertyMap.containsKey(mPropertyName);
if (wasInMap) {
setterOrGetter = propertyMap.get(mPropertyName);
}
}
// 第一次初始化,wasInMap为false
if (!wasInMap) {
// 初始化setterOrGetter
setterOrGetter = getPropertyFunction(targetClass, prefix, valueType);
if (propertyMap == null) {
propertyMap = new HashMap<String, Method>();
propertyMapMap.put(targetClass, propertyMap);
}
propertyMap.put(mPropertyName, setterOrGetter);
}
}
return setterOrGetter;
}
在setupSetterOrGetter方法中调用到了getPropertyFunction函数来初始化mSetter或者mGetter参数
3.4.8 接下来分析PropertyValuesHolder.getPropertyFunction()
private Method getPropertyFunction(Class targetClass, String prefix, Class valueType) {
// TODO: faster implementation...
Method returnVal = null;
// 通过prefix和mPropertyName拼接出方法名,如setAlpha或者getAlpha
String methodName = getMethodName(prefix, mPropertyName);
Class args[] = null;
// valueType为Float.class
if (valueType == null) {
try {
returnVal = targetClass.getMethod(methodName, args);
} catch (NoSuchMethodException e) {
// Swallow the error, log it later
}
} else {
args = new Class[1];
Class typeVariants[];
// typeVariants为FLOAT_VARIANTS
if (valueType.equals(Float.class)) {
typeVariants = FLOAT_VARIANTS;
} else if (valueType.equals(Integer.class)) {
typeVariants = INTEGER_VARIANTS;
} else if (valueType.equals(Double.class)) {
typeVariants = DOUBLE_VARIANTS;
} else {
typeVariants = new Class[1];
typeVariants[0] = valueType;
}
// FLOAT_VARIANTS,遍历含有float.class、Float.class、double.class、Double.class等参数的方法
// 只要是相关的基本类型,都会遍历反射查找set或者get方法,看到这里是不是感觉太神奇了
for (Class typeVariant : typeVariants) {
args[0] = typeVariant;
try {
// 反射获取方法,成功则直接返回
returnVal = targetClass.getMethod(methodName, args);
if (mConverter == null) {
// change the value type to suit
mValueType = typeVariant;
}
return returnVal;
} catch (NoSuchMethodException e) {
// Swallow the error and keep trying other variants
}
}
// If we got here, then no appropriate function was found
}
if (returnVal == null) {
Log.w("PropertyValuesHolder", "Method " +
getMethodName(prefix, mPropertyName) + "() with type " + valueType +
" not found on target class " + targetClass);
}
return returnVal;
}
PropertyValuesHolder.setupSetterAndGetter方法已经分析完毕,回到ObjectAnimator.initAnimation()方法中来,遍历mValues初始化关键帧Keyframe的mSetter、mGetter和初始值,发现还会调用父类ValueAnimator.initAnimation()方法
3.4.9 接下来分析ValueAnimator.initAnimation()
// ValueAnimator.initAnimator方法
void initAnimation() {
if (!mInitialized) {
int numValues = mValues.length;
// 遍历mValues,调用PropertyValuesHolder.init()方法
for (int i = 0; i < numValues; ++i) {
mValues[i].init();
}
mInitialized = true;
}
}
3.4.10 PropertyValuesHolder中的init方法
// PropertyValuesHolder
void init() {
// 初始化估值器
if (mEvaluator == null) {
// We already handle int and float automatically, but not their Object
// equivalents
mEvaluator = (mValueType == Integer.class) ? sIntEvaluator :
(mValueType == Float.class) ? sFloatEvaluator :
null;
}
if (mEvaluator != null) {
// KeyframeSet knows how to evaluate the common types - only give it a custom
// evaluator if one has been set on this class
// 给关键帧设置估值器
mKeyframes.setEvaluator(mEvaluator);
}
}
3.4.11 然后来分析ObjectAnimator.animateValue()方法
ObjectAnimator的initAnimatation过程已经完毕,接下来我们继续回到ValueAnimator.setCurrentFraction(float fraction)方法,最后调用了ObjectAnimator.animateValue(float fraction),这是一个很重要的方法,主要是通过反射的方式来修改目标mTarget的属性值,这里即是alpha值,在后面中会提到,这里可以先记录一下
@Override
// ObjectAnimator
void animateValue(float fraction) {
final Object target = getTarget();
// mTarget是一个软引用,判断target是否已经被回收
if (mTarget != null && target == null) {
// We lost the target reference, cancel and clean up.
cancel();
return;
}
// 这里调用父类ValueAnimator的animateValue来计算数值
super.animateValue(fraction);
int numValues = mValues.length;
for (int i = 0; i < numValues; ++i) {
// 反射修改每一个属性值,这里修改完这一轮动画就结束了
mValues[i].setAnimatedValue(target);
}
}
分析可以看出,如果软引用mTarget已经被回收,就直接调用cancel方法后return,不再执行动画刷新动作;
上面调用父类ValueAnimator中的animateValue方法来进行插值计算
// ValueAnimator
void animateValue(float fraction) {
// 通过插值器进行计算
fraction = mInterpolator.getInterpolation(fraction);
// 获取当前的fraction值
mCurrentFraction = fraction;
int numValues = mValues.length;
for (int i = 0; i < numValues; ++i) {
// 对每一个PropertyValuesHolder计算数值
mValues[i].calculateValue(fraction);
}
if (mUpdateListeners != null) {
int numListeners = mUpdateListeners.size();
for (int i = 0; i < numListeners; ++i) {
// 回调mUpdateListeners监听器
mUpdateListeners.get(i).onAnimationUpdate(this);
}
}
}
回到子类ObjectAnimator的animateValue(float fraction)方法,遍历mValues调用PropertyValuesHolder.setAnimatedValue(target)方法,通过反射方式来修改target的属性值,上面的例子我们是通过PropertyValuesHolder.ofFloat来创建FloatPropertyValuesHolder,那么调用的就是FloatPropertyValuesHolder的setAnimatedValue方法
3.4.12 FloatPropertyValuesHolder.setAnimatedValue
@Override
void setAnimatedValue(Object target) {
// 我们传进来的是mPropertyName
if (mFloatProperty != null) {
mFloatProperty.setValue(target, mFloatAnimatedValue);
return;
}
if (mProperty != null) {
mProperty.set(target, mFloatAnimatedValue);
return;
}
// 针对jni属性
if (mJniSetter != 0) {
nCallFloatMethod(target, mJniSetter, mFloatAnimatedValue);
return;
}
// 终于到了,反射修改属性值就在这里执行的
if (mSetter != null) {
try {
mTmpValueArray[0] = mFloatAnimatedValue;
mSetter.invoke(target, mTmpValueArray);
} catch (InvocationTargetException e) {
Log.e("PropertyValuesHolder", e.toString());
} catch (IllegalAccessException e) {
Log.e("PropertyValuesHolder", e.toString());
}
}
}
在这里,我们已经把setCurrentPlayTime()方法分析完毕,回到ValueAnimator.start(boolean playBackwards)方法中,最后一行调用到了AnimationHandlers.start()方法,这里是启动动画执行,在mDuration时间内,通过间隔时间来更新目标的属性值,从而实现一系列的动画变化效果。接下来我们一起来分析AnimationHandlers.start()方法,一起来探究是怎么实现在mDuration时间内来实现动画变化效果的。
3.4.13 AnimationHandlers.start()启动动画执行
// AnimationHandlers.start()
public void start() {
scheduleAnimation();
}
// AnimationHandlers.scheduleAnimation()
private void scheduleAnimation() {
if (!mAnimationScheduled) {
mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, mAnimate, null);
// mAnimationScheduled置为true,控制动画执行,避免在同一帧渲染中重复执行
mAnimationScheduled = true;
}
}
start()方法最终是调用scheduleAnimation()方法,分析scheduleAnimation()方法可以得出,是通过mChoreographer的postCallback方法来启动动画执行的,相当于起了一个定时器来不断更新属性值alpha来实现动画刷新,那么mChoreographer是干嘛的呢,有兴趣的可以去看一下其实现的源码深入了解一下
在这里我简单描述一下,Choreographer这个类是用来控制同步处理输入(Input)、动画(Animation)以及绘制(Draw)三个UI操作的,通过接收显示系统的时间脉冲(垂直同步信号-VSync信号),在下一个Frame渲染时控制执行这些操作。
上面的代码中
mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, mAnimate, null);
参数mAnimate是一个Runnable,其实是在下一个帧进行渲染时,Choreographer执行这个Runnable(即mAnimate的run方法)
// Called by the Choreographer.
final Runnable mAnimate = new Runnable() {
@Override
public void run() {
// mAnimationScheduled置为false
mAnimationScheduled = false;
doAnimationFrame(mChoreographer.getFrameTime());
}
};
从mAnimate的实现可以看到,最终会调到AnimatationHandlers的doAnimationFrame(long frameTime)方法
3.1.14 分析AnimatationHandlers.doAnimationFrame方法是如何实现动画刷新的
// AnimatationHandlers
void doAnimationFrame(long frameTime) {
mLastFrameTime = frameTime;
// mPendingAnimations holds any animations that have requested to be started
// We're going to clear mPendingAnimations, but starting animation may
// cause more to be added to the pending list (for example, if one animation
// starting triggers another starting). So we loop until mPendingAnimations
// is empty.
// 循环判断mPendingAnimations列表是否有数据
while (mPendingAnimations.size() > 0) {
// 备份mPendingAnimations列表
ArrayList<ValueAnimator> pendingCopy =
(ArrayList<ValueAnimator>) mPendingAnimations.clone();
// 清空mPendingAnimations列表
mPendingAnimations.clear();
int count = pendingCopy.size();
// 遍历pendingCopy
for (int i = 0; i < count; ++i) {
ValueAnimator anim = pendingCopy.get(i);
// If the animation has a startDelay, place it on the delayed list
// animation如果设置了mStartDelay时间,加入到mDelayedAnims队列中 // 以便在下一个Frame渲染时遍历查看mStartDelay时间是否已经到了
if (anim.mStartDelay == 0) {
anim.startAnimation(this);
} else {
mDelayedAnims.add(anim);
}
}
}
// Next, process animations currently sitting on the delayed queue, adding
// them to the active animations if they are ready
int numDelayedAnims = mDelayedAnims.size();
// 遍历mDelayedAnims队列,判断mStartDelay时间是否已经到了,如果是的话则暂存到mReadyAnims队列中
for (int i = 0; i < numDelayedAnims; ++i) {
ValueAnimator anim = mDelayedAnims.get(i);
// 判断anime的mStartDelay时间是否到期
if (anim.delayedAnimationFrame(frameTime)) {
// 把anim加入到mReadyAnims队列中
mReadyAnims.add(anim);
}
}
int numReadyAnims = mReadyAnims.size();
// mReadyAnims保存的就是mDelayedAnims队列中delay时间已经到期的animator,遍历mReadyAnims队列
if (numReadyAnims > 0) {
for (int i = 0; i < numReadyAnims; ++i) {
ValueAnimator anim = mReadyAnims.get(i);
anim.startAnimation(this);
anim.mRunning = true;
mDelayedAnims.remove(anim);
}
// 清空mReadyAnims
mReadyAnims.clear();
}
// Now process all active animations. The return value from animationFrame()
// tells the handler whether it should now be ended
// 把mAnimations队列中的数据备份到mTmpAnimations队列中
int numAnims = mAnimations.size();
for (int i = 0; i < numAnims; ++i) {
mTmpAnimations.add(mAnimations.get(i));
}
// 遍历mTmpAnimations队列
for (int i = 0; i < numAnims; ++i) {
ValueAnimator anim = mTmpAnimations.get(i);
// 判断anim动画是否执行完毕,则加入到mEndingAnims队列中
if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
mEndingAnims.add(anim);
}
}
// 清空mTmpAnimations
mTmpAnimations.clear();
// 遍历mEndingAnims队列,调用ValueAnimator的endAnimation方法
if (mEndingAnims.size() > 0) {
for (int i = 0; i < mEndingAnims.size(); ++i) {
mEndingAnims.get(i).endAnimation(this);
}
mEndingAnims.clear();
}
// Schedule final commit for the frame.
// 更新ValueAnimator的mStartTime时间,暂时不去看
mChoreographer.postCallback(Choreographer.CALLBACK_COMMIT, mCommit, null);
// If there are still active or delayed animations, schedule a future call to
// onAnimate to process the next frame of the animations.
// 如果还有动画正在执行,或者还有未执行的动画,则调用scheduleAnimation方法
if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
scheduleAnimation();
}
}
这里代码量有点多,我们先分析在遍历mPendingAnimations和mDelayedAnims队列时,都调用到ValueAnimator的startAnimation(AnimationHandler handler)方法,下面我们一起来分析
3.4.15 ValueAnimator.startAnimation方法
// ValueAnimator
private void startAnimation(AnimationHandler handler) {
if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
System.identityHashCode(this));
}
// 注意到没有,这里又调用到了ObjectAnimator的initAnimation方法
initAnimation();
// 把当前正在执行的动画加入到AnimationHandler的mAnimations队列中
handler.mAnimations.add(this);
if (mStartDelay > 0 && mListeners != null) {
// Listeners were already notified in start() if startDelay is 0; this is
// just for delayed animations
notifyStartListeners();
}
}
在上面的代码中,大家注意到了没有,在startAnimation方法中调用到了ObjectAnimator的initAnimation()方法,这个initAnimation方法在上面已经分析了,回过头来看一下,这个initAnimation方法就是初始化动画执行过程用到的参数值,如关键帧Keyframe、get和set方法。那么在上面ObjectAnimator.start()方法中已经初始化了,为什么这里还要调用呢,这是为了使设置了mStartDelay延迟时间的Animator进行初始化调用的。
回到AnimatationHandlers的doAnimationFrame(long frameTime)方法中,在遍历mTmpAnimations队列时,调用了ValueAnimator的doAnimationFrame(long frameTime),接下来我们一起来看一下是怎么实现的
3.4.16 探究ValueAnimator.doAnimationFrame()方法
// ValueAnimator
final boolean doAnimationFrame(long frameTime) {
// mPlayingState状态改变
if (mPlayingState == STOPPED) {
mPlayingState = RUNNING;
if (mSeekFraction < 0) {
mStartTime = frameTime;
} else {
long seekTime = (long) (mDuration * mSeekFraction);
mStartTime = frameTime - seekTime;
mSeekFraction = -1;
}
mStartTimeCommitted = false; // allow start time to be compensated for jank
}
if (mPaused) {
if (mPauseTime < 0) {
mPauseTime = frameTime;
}
return false;
} else if (mResumed) {
mResumed = false;
if (mPauseTime > 0) {
// Offset by the duration that the animation was paused
mStartTime += (frameTime - mPauseTime);
mStartTimeCommitted = false; // allow start time to be compensated for jank
}
}
// The frame time might be before the start time during the first frame of
// an animation. The "current time" must always be on or after the start
// time to avoid animating frames at negative time intervals. In practice, this
// is very rare and only happens when seeking backwards.
final long currentTime = Math.max(frameTime, mStartTime);
return animationFrame(currentTime);
}
在最后一行中调用到了ValueAnimator.animationFrame()方法
// ValueAnimator
boolean animationFrame(long currentTime) {
boolean done = false;
switch (mPlayingState) {
case RUNNING:
case SEEKED:
// 计算fraction
float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
// 在上面的例子中,mDuration设置为5000ms
if (mDuration == 0 && mRepeatCount != INFINITE) {
// Skip to the end
mCurrentIteration = mRepeatCount;
if (!mReversing) {
mPlayingBackwards = false;
}
}
// 这里处理循环动画的情况,我们暂时可以略过
if (fraction >= 1f) {
if (mCurrentIteration < mRepeatCount || mRepeatCount == INFINITE) {
// Time to repeat
if (mListeners != null) {
int numListeners = mListeners.size();
for (int i = 0; i < numListeners; ++i) {
mListeners.get(i).onAnimationRepeat(this);
}
}
if (mRepeatMode == REVERSE) {
mPlayingBackwards = !mPlayingBackwards;
}
mCurrentIteration += (int) fraction;
fraction = fraction % 1f;
mStartTime += mDuration;
// Note: We do not need to update the value of mStartTimeCommitted here
// since we just added a duration offset.
} else {
done = true;
fraction = Math.min(fraction, 1.0f);
}
}
// 根据上面的例子,mPlayingBackwards为false
if (mPlayingBackwards) {
fraction = 1f - fraction;
}
// 注意啦,这里调用到ObjectAnimator的animateValue方法
animateValue(fraction);
break;
}
return done;
}
通过上面的分析,我们注意到,在animationFrame(long currentTime)方法中调用了ObjectAnimator的animateValue(float fraction),而这个方法我们在上面已经分析过了,终于又回来了,这个animateValue方法主要就是根据fraction计算属性值,然后通过反射的方式修改目标mTarget的alpha属性值,从而达到mTarget的alpha值从0.0到1.0的渐显效果。
终于到了见证奇迹的地方,ObjectAnimator动画执行就是不断的通过mChoreographer的postCallback方法实现在帧渲染时执行mAnimate这个Runnable,在animateValue方法中利用反射方式改变目标target的属性值,从而实现动画效果的。
至此,ObjectAnimator动画执行的过程已经全部完毕。
4.结尾
最后我们回到博客开头我提到的想法,就是如果在ObjectAnimator动画结束回调函数onAnimationEnd中重新start此动画,是否能达到循环播放动画呢?我们仔细分析ValueAnimator的endAnimation(AnimationHandler handler)方法
// ValueAnimator
protected void endAnimation(AnimationHandler handler) {
// 清空AnimationHandler用到的队列
handler.mAnimations.remove(this);
handler.mPendingAnimations.remove(this);
handler.mDelayedAnims.remove(this);
mPlayingState = STOPPED;
mPaused = false;
if ((mStarted || mRunning) && mListeners != null) {
if (!mRunning) {
// If it's not yet running, then start listeners weren't called. Call them now.
notifyStartListeners();
}
ArrayList<AnimatorListener> tmpListeners =
(ArrayList<AnimatorListener>) mListeners.clone();
int numListeners = tmpListeners.size();
for (int i = 0; i < numListeners; ++i) {
// 回调AnimatorListener.onAnimationEnd,在我的想法中就是在这里重新start动画
tmpListeners.get(i).onAnimationEnd(this);
}
}
// 这些标志位都置为false
mRunning = false;
mStarted = false;
mStartListenersCalled = false;
mPlayingBackwards = false;
mReversing = false;
mCurrentIteration = 0;
if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
System.identityHashCode(this));
}
}
通过分析,原来在AnimatorListener.onAnimationEnd回调中即使重新start动画,由于当时mStartListenersCalled为true,所以再次start动画时不会在回调AnimatorListener.onAnimationStart方法,在后面又把mRunning和mStarted两个标志位改为false,导致在第二次start的动画结束时调用endAnimation方法中因为这两个标志位都是为false,所以不会再次回调AnimatorListener.onAnimationEnd方法,也就是说重新start起来的动画执行完毕就不会再此触发start动作,所以验证博客开头代码的实验效果。
这篇博客已经完毕,非常感谢您对本篇的关注,希望能对您了解ObjectAnimator属性动画的实现有帮助,要是有不足之处欢迎指正,我们相互讨论学习!