Description:
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Link:
https://leetcode.com/problems/rotate-function/#/description
解题方法:
1、暴力破解,通过F(k)的方程对每次进行环位移的数组来求出解,也能AC。
2、通过观察得知,F(k)都可以由F(k-1)求出,方程为F(i-1) + sum - n*A[n-i] = F(i)
,其中sum为数组元素的和。所以求出F(0)和sum就可以把剩下的算出。
Time Complexity:
解法一:O(N^2)
解法二:O(N)
完整代码:
解法一:
int maxRotateFunction(vector<int>& A)
{
int max = INT_MIN;
if(A.size() == 0)
return 0;
for(int k = 0; k < A.size(); k++)
{
int sum = 0;
int i = 0;
for(; i < k; i++)
sum += (A[A.size() - k + i] * i);
for(int j = 0; j < A.size() - k; j++, i++)
sum += (A[j] * i);
max = sum > max ? sum : max;
}
return max;
}
解法二:
int maxRotateFunction(vector<int>& A)
{
if(A.size() == 0)
return 0;
int f = 0, sum = 0, n = A.size();
for(int i = 0; i < n; i++)
{
f += A[i] * i; //算出F(0)
sum += A[i]; //算出sum
}
int max = f;
for(int i = 1; i < n; i++)
{
f = f + sum - (n * A[n - i]); //F(i-1) + sum - n*A[n-i] = F(i)
max = f > max ? f : max;
}
return max;
}