数据分析思维:常用的9种数据分析方法,建议收藏

​以下整理的是常见的数据分析方法,不同的分析方法适用于不同的场景,有助于快速上手数据分析,解决实际工作问题。要注意数据分析方法并非只有做数据分析工作中会用到,生活中也颇有用处,换个角度思考问题或许就能发现新的世界。

1.逻辑树分析法

image.png

如果你分析的目的是想把复杂的事情变简单,可以使用逻辑树分析法。有名的费米问题就是使用逻辑树分析法。

image

在求职面试中,也经常会考察这种问题:

全国有多少个产品经理?
深圳地铁高峰期客流量多大?

公司楼下摆小摊月入多少?

这些估算类的问题都可以拆解成逻辑树,把一个复杂的问题细分到可以具体量化的问题上。

再贴一个刚发现有味道的回答:

image.png

2.多维度拆解分析法:

比如评价一个公司好坏需要从多个维度:

image

其实我认为这个和逻辑树的思路是比较类似的。把一个模糊的问题,拆解成多个子问题。

3.PEST分析法

image.png

严格的来说这个有点假大空只能说沾边数据分析,但是如果你是做行业分析,就可以使用PEST分析,这一般是在市场调研的时候用。

Political Factors:政治环境

Economic Factors:经济环境

Social and cultural Factors:社会环境

Technological Factors:技术环境

具体可以参考人人都是产品经理上的一篇少儿编程行业PEST分析:

https://www.sohu.com/a/382315498_114819

4.对比分析法:

想要对比好坏,就可以使用对比分析法。

比如女朋友问:我白吗?就是在做对比。

image.png

以前不知道在哪个课程里面听到过这句话:好的数据指标一定是比例,好的数据分析一定有对比。确实现在在数据分析工作中根本离不开对比。

5.假设检验分析法:

image.png

如果你想找问题发生的原因,就用到假设检验分析方法。比如侦探片就会经常用这个办法,先假设在论证。

类比到数据分析就是先假设是某原因导致结果不好,在针对的去用数据论证。在工作中常用假设论证法,可以快速提升你的业务思考能力。

6.相关分析法:

image.png

如果你想知道A和B有什么关系就要用到相关分析法。如云量多少和会发生下雨事件的概率会呈强正相关。

同样的会有负相关,不相关,非线性相关。实际工作中我们会制作散点图来分析两个不同事物的相关性:

image.png

如抖音,B站推荐我喜欢的视频。豆瓣推荐喜欢的电影会用到相关分析。

image

但是使用相关分析必须结合实际业务。

举个例子:我家门前的树每年都在长,国家的GPD每年也都在涨。虽然看起来是正相关,但实际毫无关系。

7.群组分析法:

如果你想对用户留存和流失分析,就要用到群组分析法。

如产品发布发布版本的更新是导致用户增长还是流失。可以按照用户使用产品的时间特征进行用户数据分组,如可以分为使用产品x天组用户。

image.png

按下文的RFM分类也是一个很好的分类办法。

8.RFM分类法:

image.png

如果你想对用户按价值分类,就要用到RFM分析方法,从而做到精细化运营。

其实是类似矩阵法,但是是把二维矩阵转化成了三维。

根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标:

最近一次消费 (Recency)

消费频率 (Frequency)

消费金额 (Monetary)

9.最终路径法

image.png

也可以叫漏斗法,AARRR也属于漏斗法的一种。如果你想分析用户的行为或者产品运营,就要用到最终路径法。通过对于起始和目标之间步骤的管理以及数据的反馈精细化运营。

image.png

如网上商城从点击到付费中间路径的用户行为分析。在线教育点击到付费中间的转化等等。

常见的数据分析方法就介绍到这里了,但是归根到底还是必须结合实际业务场景,否则一切都是空谈。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容