毫米波雷达原理介绍

姓名:刘方姣  学号:22021211931 电子工程学院

转自:(203条消息) 毫米波雷达原理介绍_晓晨的博客的博客-CSDN博客_毫米波雷达原理

【嵌牛导读】:本文首先介绍了毫米波雷达的概念,特点,后续则对FMCW调频连续波的测距、测速、测角原理进行详细叙述

【嵌牛鼻子】:毫米波雷达

【嵌牛提问】:什么是毫米波雷达?有什么特性?

【嵌牛正文】:

毫米波雷达是指工作在波长为1-10mm的毫米波段,频率为30~300GHz。

基于其工作模式可以分为 “脉冲” 和 “连续波” 两种。其中,脉冲类型的毫米波雷达的原理与激光雷达相似都是采用TOF的方法。而连续波类型可以分为:CW恒频连续波,用于测速; FSK频移键控连续波,可探测单个目标的距离和速度,以及目前所采用的:FMCW调频连续波,探测多个目标的距离和速度。

本文后续则对FMCW调频连续波的测距、测速、测角原理进行详细叙述。

Chirp信号:线性调频脉冲

Chirp信号:是一个频率随着时间线性增加的正弦波,其在振幅时间表示中,如下所示。

我们把它换到频率时间图中,可以看到是一个 斜率S的直线。起始时刻fc=77GHz,在Tc 40微妙的时间中跨越4GHz的带宽,B与S是定义系统性能的重要参数。

我们来简单看一下调频连续波毫米波雷达的工作过程:首先是合成器生成一个Chirp信号,然后通过TX天线发射,同时发送一份数据给混频器,遇到物体反射之后通过RX天线接收回波信号在混频器中生成一个中频信号。

混频器的工作原理如下:

① 合成器生成一个Chirp信号

② TX天线发射

③ RX天线接收反射回来的线性调频脉冲

④ 混频器将TX与RX的信号进行混合,生成中频IF(intermediate frequency)信号

对于输入的两个正弦波,输出的正弦波角速度也就是频率是两个输入信号的差值,相位也是两个输入信号的差值。

IF中频信号及单个目标测距计算

上方图中TX为发射信号,RX为接收信号。两者之间有一个时间延迟τ。

前面介绍混频器的作用时已经说过:混频器生成的IF信号在频率和相位两个方面都是两个输入信号直接相减,所以可以通过下方的f-t图进行表示,即一条频率恒定的直线。

时延τ为物体到雷达到物体所花费的往返时间,可以通过下述表示:

所以雷达前方的单个物体所生成的恒定频率的IF信号可以通过下述进行表示:

对此式稍微进行一些变换,得到物体到雷达的距离为:

距离分辨率

由雷达前方为一个物体推广到前方有多个物体。如右侧上方射频信号的 f-t 图像中所示,雷达发生一个Chrip信号,接收多个从不同物体反射的线性调频脉冲。则右侧下方的IF信号 f-t 图像中也与其对应。

我们前述已经了解到, IF信号的频率与物体到雷达的距离成正比,所以最下方代表物体距离最近,最上方代表物体距离最远。

在理想状态下,经过傅里叶变换,对应到频域中也会出现三个峰值。

一个观测窗口 T 能够区分频率差异大于 1/T Hz的成分。

即:

最后,我们得到结论:距离分辨率取决于毫米波雷达Chirp信号的带宽。

举个例子,在4GHz带宽情况下,可以实现4 cm的距离分辨率。

最远观测距离

如上图所示,毫米波雷达在工作过程中会先对IF信号进行一个低通滤波,然后由ADC(analog to digital converter,模拟信号转换成数字信号)进行数字化,接着被发送到DSP(digital signal processing,数字信号处理器)中进行傅里叶变换估算物体的距离,以及进行后续其他估算物体速度、到达角等信息。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容