2. Goal-Based Agents: Solving Problems by Searching

A problem is defined by four items: initial state, successor function, goal test, path cost

A solution is a sequence of actions leading from the initial state to a goal state

Tree search algorithm

Basic idea:
offline, simulated exploration of state space by generating successors of already-explored nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes state, parent, children, depth, path cost g(n)
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Frontier implemented as priority queue of nodes ordered according to strategy

Uninformed search strategies

A strategy is defined by picking the order of node expansion
Uninformed strategies use only the** information available** in the definition of the problem(uninformed 表示 该策略探测所有相应顺序的点或者只能根据Initial点到下一个点的情况 来决定下一个点的选择,不能参考下一个点到目标点的情况;inform 则可以同时参考这两种情况,并对下一个点做出选择。)

Breadth-first search (blind search)
Uniform-cost search
Depth-first search (blind search)
Depth-limited search (blind search)
Iterative deepening search(blind search)

Search strategies

Strategies are evaluated along the following dimensions:

  1. completeness—does it always find a solution if one exists?
  2. solution optimality—does it always find a least-cost solution?
  3. time complexity—number of nodes generated (or expanded)
  4. space complexity—maximum number of nodes in memory

Time and space complexity are measured in terms of

  1. b—maximum branching factor of the search tree(一个node一次最多可以产生的nodes数量)
  2. d—depth of the shallowest solution
  3. m—maximum depth of the state space (may be ∞)

Breadth-first search

Definition: Expand shallowest unexpanded node, frontier is a FIFO queue(随机选择一个点)

遍历过程

Effect:
Complete: Yes (if b and d are finite)
Time: 1 + b + b^2 + b^3 + . . . + b^d + (b^(d+1) − b) = O(b^(d+1))
Space: O(b^(d+1))
Optimal: Yes if cost = 1 per step; not optimal in general

Uniform-cost search

Definition: Expand least-cost unexpanded node, frontier = queue ordered by path cost, lowest first(和上一个的遍历方式一样,不同处在于选择next node 的方式)

Equivalent to breadth-first if step costs all equal.

Effect:
Complete: Yes, if step cost ≥ ǫ
Optimal: Yes—nodes expanded in increasing order of g(n)
区别:

  1. 贪婪算法只选择当前下一步cost最小的值,然后提交。
  2. uniform cost 会计算tree 里 所有探测到的non-visited node的total-cost(从root 到下一个点),选择最小的点提交。
    eg. For a given node A, having child nodes B,C,D with associated costs of (10, 5, 7), uniform cost algorithm will choose C, as it has a lower cost. After expanding C, see nodes E, F, G with costs of (40, 50, 60). uniform cost algorithm will choose D(0+7, E is 40 +5).
    greedy algorithm will choos C and E.

Depth-first search

Definition: Expand deepest unexpanded node, frontier = LIFO queue

遍历过程

Effect:
Complete: No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

Time: O(b^m): terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space: O(bm), i.e., linear space! (deepest node+ancestors+their siblings)

Optimal: No

Iterative deepening search

Performs a series of depth limited depth-first searches

Combines advantages of breadth-first and depth-first search:

  1. completeness
  2. returns shallowest solution
  3. use linear amount of memory
遍历过程

Effect:
Complete: Yes (if b and d are finite)
Time: O(b^d)
Space: O(bd)
Optimal: Yes, if step cost = 1 Can be modified to explore uniform-cost tree

Depth-limited search

depth-first search with depth limit l
cutoff: no solution within the depth limit
failure: the problem has no solution

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,056评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,842评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,938评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,296评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,292评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,413评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,824评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,493评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,686评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,502评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,553评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,281评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,820评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,873评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,109评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,699评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,257评论 2 341

推荐阅读更多精彩内容

  • 这两天,被火车站kan人事件刷屏了。有人说被害者活该,有人说杀人者残暴,还有人说,社会太可怕了。我只想说,情绪真的...
    得得198708阅读 741评论 0 0
  • 走遍了南北西东,也到过了许多名城......还是会在一个人慢慢散步的时候想起家。 当同事放假过节欢快的回家时,我就...
    温暖大大白阅读 255评论 0 0
  • 阳光下 你灿烂地抬着头 朝着朝阳 向着落日 微笑着 张望着 从不彷徨 从不哀伤 即使是雨落的季节 向日葵 微笑着 ...
    会慢慢懂得阅读 211评论 4 0
  • 那些年…… 沈佳宜错过了柯景腾, 致青春里 郑薇错过了陈孝正, 前任攻略里 罗茜错过了孟云, 同桌的你里 周小栀错...
    秭颜阅读 254评论 0 0
  • 当一个人处于兴奋、高兴的情绪状态时,其瞳孔就会明显变大;当一个人处于悲观、失望的情绪状态时,其瞳孔就会明显缩小。因...
    换氧阅读 412评论 0 1