打卡第24天:按摩师

1. 题目描述

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。

示例 3:

输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/the-masseuse-lcci

2. 解题思路

动态规划做这道题再合适不过了,动态规划实际上就是穷举,并且穷举的同时可以把问题分解为子问题,不过同一般穷举比较来看,动态规划使用了DP Table达到了备忘录的作用,能够记录之前可能穷举过的值,尽量避免子问题之间的交叉计算,提高性能。
做动态规划的题的一般思路是先明确状态,状态是我们要解决的问题或者子问题里面变化的量,比如这道题里面,预约人数以及每次预约的时长都是定好了的,所以唯一的变量就是接受多少个预订,那么预订时长就是预订个数对应的时长相加,正好是这道题需要求解的答案;然后是定义DP Table的含义,然后再确定行为,然后明确base case,这样状态转移方程就写出来了。
比如,这道题我们确定时长为状态,然后定义dp[i]为有i个预订的情况下最长预约时长,然后定义行为有接受第i次预订和不接受,base casedp[0]0dp[1]为第一个预订的时长,状态转移方程为dp[i]=max(dp[i-1], dp[i-2]+nums[2]),即在有i个预订的情况下,最长预约时长为如果接受第i个预订,那么时长为dp[i-2]+nums[2],不接受为(dp[i-1]

2.1 代码

/**
 * @param {number[]} nums
 * @return {number}
 */
var massage = function(nums) {
    const len = nums.length
    if (len === 0) return 0
    if (len === 1) return nums[0]
    const dp = new Array(len)
    dp[0] = nums[0]
    dp[1] = Math.max(nums[0], nums[1])
    for (let i = 2; i < len; i++) {
        if (dp[i]) continue
        dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i])
    }
    return dp[len-1]
};

2.2 性能表现

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,319评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,801评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,567评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,156评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,019评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,090评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,500评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,192评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,474评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,566评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,338评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,212评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,572评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,890评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,169评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,478评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,661评论 2 335

推荐阅读更多精彩内容

  • (欢迎转载,但请注明出处并附带链接)算法好久没复习了,今天看见一妹子在办公室刷Leetcode,顿时我也来了兴趣,...
    Nick_Zuo阅读 648评论 0 3
  • 动态规划方法的关键点 1、最优化原理,也就是最优子结构性质。这指的是一个最优化策略具有这样的性质,不论过去状态和决...
    雨住多一横阅读 527评论 1 0
  • 树形动态规划,顾名思义就是树+DP,先分别回顾一下基本内容吧:动态规划:问题可以分解成若干相互联系的阶段,在每一个...
    Mr_chong阅读 1,433评论 0 2
  • 动态规划 动态规划是一种高性能的牛逼算法,由美国的R.Bellman提出,它是动态就是体现在此算法是基于一个递推公...
    董泽平阅读 1,153评论 0 12
  • LeetCode Dynamic Programming DP 九章DP班归纳: 坐标型DP:保存的是坐标的状态;...
    Deepin_阅读 594评论 0 1