深度学习训练时GPU温度过高?几个命令,为你的GPU迅速降温。

图来自网络

新买回来的不带水冷公版GPU,在满负载运行的时候,温度从室温马上飙升到85度,而且模型训练不是几分钟完事,很有可能要长期保持在高温状态下运行,让如此昂贵的GPU一直发烧真是让人太心疼!

首先得到知乎上一位朋友的文章启发,文章点击这里:从零开始组装深度学习平台(GPU散热)。这篇文章写的是在ubuntu X server环境下,通过修改nvidia-settings来修改GPU风扇速度,因为默认的nvidia-settings设置是,即使GPU在计算的时候温度已经达到85度,风扇速度最高不会超过70%,这样就无法很好地为GPU进行散热,因此需要手动修改GPU风扇速度。

注,以下设置都是针对linux系统的GPU设置,windows的朋友请搜索相关文章。

一、如果你有显示器(X server)

可以完全按照上面提到的这篇文章来设置:从零开始组装深度学习平台(GPU散热),这里贴出关键步骤为:

  1. 修改/etc/X11/xorg.cong文件
    sudo nano /etc/X11/xorg.conf

  2. 在Section "Device"里面加入 Option "Coolbits" "4"

Section "Device"
        Identifier      "Device0"
        Driver          "nvidia"
        VendorName      "NVIDIA"
        Option          "Coolbits" "4"
EndSection
  1. 重启电脑sudo reboot

  2. 输入:nvidia-settings -a "[gpu:0]/GPUFanControlState=1" -a "[fan:0]/GPUTargetFanSpeed=100"

这里GPUTargetFanSpeed=100就是风扇的速度, 100就是风扇运行在100%的速度, 也可以改成其它速度. 注意在新的NVIDIA驱动, GPUCurrentFanSpeed 被改成了 GPUTargetFanSpeed. 另外GPUFanControlState=1表示让用户可以手动调节GPU风扇速度。

感谢原文知乎作者:张三

二、如果你没有显示器

一般在ubuntu上搭建完深度学习环境后,许多朋友习惯把ubuntu的X桌面服务禁用掉,然后通过另一台windows系统的电脑通过ssh来连接GPU机器使用。这个时候X server已经被禁用掉,开机也自动启动命令行模式,上面第一种做法就不适用于这种情况了。原因是,nvidia-settings只能在X桌面环境下运行,若你想强行使用这个设置就会报错:


因此正常情况下,是不可能通过修改这个设置来改变风扇速度的。

但有没有其它方法修改呢?有!你需要骗过系统,让它你有显示器,这就是常说的headless模式。

主要的解决方法是参考了这篇文章:fan speed without X (headless) : powermizer drops card to p8,这篇文章提供了修改风扇速度的脚本,在ubuntu下运行脚本即可实时调节风扇速度,从而为GPU降温。

这里提供详细步骤:

1.克隆这个github仓库到本地目录/opthttps://github.com/boris-dimitrov/set_gpu_fans_public

cd /opt
git clone https://github.com/boris-dimitrov/set_gpu_fans_public

在这个仓库包括上图几个文件,主要起作用的是cool_gpu这个文件,我们把文件夹克隆下来之后,运行cool_gpu就可以调节风扇速度了。

2.修改文件夹名字为set-gpu-fans,因为作者疏忽,在cool_gpu代码中此文件夹被命名为“set-gpu-fans”,然而git clone下来的文件夹名字是“set_gpu_fans_public”。

sudo mv set_gpu_fans_public set-gpu-fans

3.创建一个符号链接,让系统知道这个代码在哪里:

ln -sf ~/set-gpu-fans /opt/set-gpu-fans

4.定位到set-gpu-fans文件夹,输入以下命令:

cd /opt/set-gpu-fans
sudo tcsh
./cool_gpu >& controller.log &
tail -f controller.log

这个命令是运行cool_gpu降温代码,启动后会看到这些实时变化的提示:

在开始计算测试前,我们看看目前GPU的温度:

这里用的是2卡进行计算测试,我们可以看到,2卡的Perf(性能)一项已经被调整为“P2”(其它卡仍为P8),2卡的温度为35度,而且三个风扇的速度均为55%。“P2”指的是nvidia的显卡power state,从P0到P12,最高性能状态为P0,运行计算是为P2,最低功耗(最低性能)为P12。

启动模型训练,我们可以看到程序正在不断地自动调节温度:

当运行训练模型一段时间后,最终的温度状态如下图:

风扇被全部调节到80%的速度,温度稳定在65度!对比文章开头的数据,显卡温度从84度降到65度,整整下降了20度!

三、一点要注意的

在上面第二部分的文章出来之前,网上还流传着另一篇文章,那篇可以说是最原始的版本,上面第二部分的代码正是基于该篇原始版本文章改进的,链接地址在这里:Set fan speed without an X server.

但这篇文章的原始代码存在一个严重问题:虽然能够强制改变风扇速度,但GPU会被降频工作,power state会被强制降为P8,导致运算性能严重下降!

可能是那篇文章发表时间比较早,不大适用现在最新的显卡和驱动,因此才有了上面第二部分的改进版本,所以大家不要使用原始版本的代码,否则GPU会被限制性能。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341

推荐阅读更多精彩内容