常见负载均衡算法

轮询法(Round Robin)

轮询法基本上算是最简单的负载均衡算法了,它的思想就是不管啥情况,对所有的服务器节点全部按顺序来,将请求按照顺序轮流地分配到各个服务器上。这种算法会使每台服务器处理的请求是相同的,所以适合用于服务器硬件条件基本都相同的场景。

加权轮询法(Weight Robin)

在轮询算法的基础上添加了权重的条件,刚才提到轮询算法对所有服务器“一视同仁”,那么加权轮询算法无疑就是对各个服务器有了“高低贵贱之分”,没办法,服务器的处理水平不同,只能是让那些强悍的机器优先并多处理些请求,比较弱的机器嘛就让它稍稍压力小一点。

随机法(Random)

随机算法也是一种适用场景比较多的负载均衡算法,这种算法基本思想也很简单,随机生成一个数字(或者随机挑一个IP地址)出来,然后挑到谁就去谁家,当然,如果随机数是等概况生成的,那时间长了,基本上跟轮询算法也没啥区别了,当然区别最主要的还是在顺序,随机么就没那么严格的顺序了。

加权随机法(Weight Random)

加权随机法是在随机法的基础上加了加权的条件,随机法时间长了,基本上跟一般轮询算法就没啥区别了,刚才也提到了,如果服务器的配置都差不多,那也就算了,但是如果服务器处理能力差异比较大,那水平高的和水平低的服务器都给这么多任务,那对于高配置来讲就有点浪费,对于低配置的服务器来讲却有点吃不消,所以在这种配置差异性比较大的情况下,加权的工作还是十分必要的。加权随机算法就是适用于这样的场景。

最小连接法(Least Connections)

这个算法思想也很简单,顾名思义,哪个服务器的连接少,就分配给哪个服务器新的请求,合情合理,但是这种算法的缺点就是,跟我们上面分析的几种算法一个意思,一个比较弱的服务器和一个比较彪悍的服务器,本来就是前者连接要少,后者要大,如果非得谁的少新请求给谁,那就是弱服务器的连接要等于强服务器的连接,无疑这样会让弱服务器吃不消,或者让强服务器造成资源浪费,所以在这里依然可以用加权的方法来解决这个问题——加权最小连接法。

最少活跃调用数

当前活跃调用数少的机器优先收到请求,目的是让更慢的机器收到更少的请求。举个例子:每个服务维护一个活跃数计数器。当A机器开始处理请求,该计数器加1,此时A还未处理完成。若处理完毕则计数器减1。而B机器接受到请求后很快处理完毕。那么A,B的活跃数分别是1,0。当又产生了一个新的请求,则选择B机器去执行(B活跃数最小),这样使慢的机器A收到少的请求。

最小活跃调用数本质上和最小连接法是相同的。

哈希法(Hash)

源地址哈希法就是可以把客户端的IP地址拿出来,然后计算出IP地址的hash值,hash值是一个很大的正整数,那么问题来了,怎么才能映射到相对应的服务器了,答案很简单:serverPosition=hashCode%serverListSize。另外,为了解决大规模hash迁移,也可以使用一致性hash。 当某一台 Provider 崩溃时,原本发往该 Provider 的请求,基于虚拟节点,平摊到其它 Provider,不会引起剧烈变动。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容