自然语言处理——7.5 自动分词基本算法

􀂋 有词典切分/ 无词典切分
􀂋 基于规则的方法/ 基于统计的方法

1. 最大匹配法(Maximum Matching, MM)

-有词典切分,机械切分

  • 正向最大匹配算法 (Forward MM, FMM)
  • 逆向最大匹配算法 (Backward MM, BMM)
  • 双向最大匹配算法 (Bi-directional MM)

假设句子:S = c_1c_2...c_n,某一词:w_i =c_1c_2...c_m,m为词典中最长词的字数。

  • 1.1 FMM算法描述

  • 1.2 例子:

  • 1.3 优缺点

  • 优点
    • 程序简单易行,开发周期短;
    • 仅需要很少的语言资源(词表),不需要任何词法、句法、语义资源;

  • 缺点
    • 歧义消解的能力差;
    • 切分正确率不高,一般在95%左右。

2. 最少分词法(最短路径法)

  • 2.1 基本思想

设待切分字串 S=c_1 c_2…c_n,其中c_i (i =1, 2, …, n) 为单个的字, n 为串的长度,n \ge 1。建立一个节点数为n+1的切分有向无环图G,各节点编号依次为V_0,V_1,V_2,…,V_n

求最短路径:贪心法或简单扩展法。

  • 2.2 算法描述

  • 2.3 例子

  • 2.4 存在的问题
    例(2) 输入字串: 他说的确实在理。
    输出候选:
    他/ 说/ 的/ 确实/ 在理/ 。(词个数:6)
    他/ 说/ 的确/ 实在/ 理/ 。(词个数:6)
    系统无法做正确性判断。

  • 2.5 优缺点

  • 优点:
    • 切分原则符合汉语自身规律;
    • 需要的语言资源(词表)也不多。

  • 弱点:
    • 对许多歧义字段难以区分,最短路径有多条时,选择最终的输出结果缺乏应有的标准;
    • 字串长度较大和选取的最短路径数增大时,长度相同的路径数急剧增加,选择最终正确的结果困难越来越越大。

3. 基于语言模型的分词方法

  • 3.1 方法描述
    设对于待切分的句子SW = w_1w_2……w_k(1\le k \le n) 是一种可能的切分。

  • 3.2 优缺点

  • 优点:
    • 在训练语料规模足够大和覆盖领域足够多时,可以获得较高的切分正确率。

  • 弱点:
    • 模型性能较多地依赖于训练语料的规模和质量,训练语料的规模和覆盖领域不好把握;
    • 计算量较大。

4. 基于HMM的分词方法

  • 4.1 基本思想

把输入字串(句子)S作为HMM \mu的输入;切分后的单词串 S_w 为状态的输出,即观察序列S_w = w_1w_2 …w_n ,n \ge 1。词性序列 S_c 为状态序列,每个词性标记 c_i 对应HMM 中的一个状态 q_iS_c= c_1c_2…c_n

{{\hat S}_\omega } = \mathop {\arg \max }\limits_{{S_\omega }} p({S_\omega }|\mu )

  • 4.2 优缺点

  • 优点:
    在训练语料规模足够大和覆盖领域足够多时,可
    以获得较高的切分正确率。

  • 弱点:
    • 模型性能较多地依赖于训练语料的规模和质量,训练语料的规模和覆盖领域不好把握;
    • 模型实现复杂、计算量较大。

5. 由字构词(基于字标注)的分词方法(Character-based tagging )

  • 5.1 基本思想

将分词过程看作是字的分类问题。该方法认为,每个字在构造一个特定的词语时都占据着一个确定的构词位置(即词位)。假定每个字只有4个词位:词首(B)、词中(M)、词尾(E)和单独成词(S),那么,每个字归属一特定的词位。

  • 5.2 评价

该方法的重要优势在于,它能够平衡地看待词表词和未登录词的识别问题,文本中的词表词和未登录词 都是用统一的字标注过程来实现的。在学习构架上, 既可以不必专门强调词表词信息,也不用专门设计特 定的未登录词识别模块,因此,大大地简化了分词系统的设计

6. 生成式方法与区分式方法的结合

  • 6.1 基本思想
    大部分基于词的分词方法采用的是生成式模型(Generative model)

WSe{q^*} = \mathop {\arg \max }\limits_{WSeq} p(WSeq|c_1^n) = \mathop {\arg \max }\limits_{WSeq} p(WSeq)

使用3-gram:

p(\omega _1^m) = \mathop \Pi \limits_{i = 1}^m p({\omega _i}|\omega _1^{i - 1}) \approx \mathop \Pi \limits_{i = 1}^m p({\omega _i}|\omega _{i - 2}^{i - 1})

而基于字的分词方法采用区分式模型(Discriminative model)


  • 6.2 生成式模型与判别式模型的比较
    6.2.1 生成(产生)式模型(Generative Model)

假设 o 是观察值,q 是模型。如果对p(o|q)进行建模, 就是生成式模型。其基本思想是:首先建立样本的概 率密度模型,再利用模型进行推理预测。要求已知样 本无穷多或者尽可能地多。该方法一般建立在统计学 和 Bayes 理论的基础之上。

主要特点:从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。
主要优点:实际上所带的信息要比判别式模型丰富,研究单类问题比判别式模型灵活性强,模型可以通 过增量学习得到,且能用于数据不完整(missing data) 情况。
主要缺点:学习和计算过程比较复杂。

6.2.2 判别(区分)式模型(Discriminative Model)

如果对条件概率(后验概率) p(q|o)进行建模,就是判别式模型。基本思想是:有限样本条件下建立判别函数,不 考虑样本的产生模型,直接研究预测模型。表性理论为统计学习理论。
主要特点:寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。
主要优点:判别式模型比生成式模型较容易学习。
主要缺点:黑盒操作,变量间的关系不清楚,不可视。

基于字的区分模型有利于处理集外词,而基于词的生成模型更多地考虑了词汇之间以及词汇内部字与字之间的依存关系。因此,可以将两者的优势结合起来。

6.2.3 结合方法1

结合方法1:将待切分字串的每个汉字用[c, t]_i替代, 以[c, t]_I 作为基元,利用语言模型选取全局最优(生成式模型)。

6.2.4 结合方法2:插值法把两种方法结合起来

7. 其他分词方法

  • 全切分方法
  • 串频统计和词形匹配相结合的分词 方法
  • 规则方法与统计方法相结合
  • 多重扫描法
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,784评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,745评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,702评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,229评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,245评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,376评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,798评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,471评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,655评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,485评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,535评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,235评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,793评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,863评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,096评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,654评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,233评论 2 341

推荐阅读更多精彩内容