单例模式(上)---如何优雅地保证线程安全问题

上次帅地问的问题,让小秋学习了不少。这几天小秋刚好学习了一些设计模式的知识,这不,又跑去找帅地探讨一些问题了。

粗糙的同步

小秋:地哥,上次你问的问题,让我收获颇多,这些天我大致研究了下设计模式,帅地有什么指教的吗?

帅地:小子,行啊。那我再考考你得了。

此刻小秋聚精会神着等帅地又会抛出哪些问题.....

帅地:学过单例模式吧?单例模式有多种写法,写一种出来看看。

小秋:好啊,听说单例模式是面试中问的最多的一种模式,对于单例模式的几种的写法,我可以相当熟练哦(有点得意)。

于是,小秋甩手就写了一种懒汉模式的代码出来

public class Singleton {
    private Singleton instance = null;
    //私有构造函数
    private Singleton(){};
    
    public Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

懒汉模式:就是等到有线程调用getInstance这个方法时,才来创建对象实例。与懒汉模式相反的是饿汉模式,下篇会讲到。

帅地:够熟练的你,不过你这段代码并非线程安全的,怎么办?

小秋:嘿嘿,简单,看我的。

public class Singleton {
    private Singleton instance = null;
    //私有构造函数
    private Singleton(){};
    
    //多了个synchronized关键字
    public   synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

注:不清楚synchronized关键字的可以看我之前写的文章:线程安全(上)--彻底搞懂synchronized(从偏向锁到重量级锁)

双重检测机制

帅地:你刚才的那种线程不安全的写法,你知道是在什么时候调用这个方法,会出现线程安全问题吗?

小秋:知道了,主要是因为,当这个实例对象还没有被创建过的时候,突然同时有几个线程来创建,就有可能会出现线程安全问题导致创建了不止一个实例。

但是,如果这个实例已经被安全着创建了之后,以后不管有再多的线程来调用,那么都不会出现线程安全的问题,因为这个if语句里面的代码永远不会被执行。

帅地:分析的很好,那么问题来了。当一个对象被创建之后,以后有线程来调用这个方法,本来可以不用进入同步块也能保证线程安全的,可是,你把synchronized声明在了方法名称前,导致之后该方法的调用都会进入同步快,这样很影响速度。

小秋:原来这样,怪不得我看书本说,不推荐这种做法,那我改一下:

public class Singleton {
    private Singleton instance = null;
    //私有构造函数
    private Singleton(){};
    public   Singleton getInstance() {
        synchronized (Singleton.class) {
            if (instance == null) {
                instance = new Singleton();
            }
        }
        return instance;
    }
}

帅地:小秋,你这样其实和上面那个是几乎一样的,因为你把if(instance == null)这句话的判断放在了同步块内,以后有线程调用这个方法,还是会每次都进入同步块的。

其实,我们需要的是,当判断到instance != null时,就直接把instance返回了,而不是把这个判断放到同步块里。

小秋:我知道怎么做了。

于是,不一会,小秋劈里啪啦就写好了

public class Singleton {
    private Singleton instance = null;
    //私有构造函数
    private Singleton(){};
    
    //这种是什么鬼方式?
    public   Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class){
                instance = new Singleton();
            }
        }
        return instance;
    }
}

帅地:你确定你这段代码是线程安全的吗?

小秋赶紧在脑子里模拟了一下当实例对象还没有被创建时,有两个进程同时进入了if(instance == null){}代码块中,结果发现这两个对象都会成功创建新的对象实例。

于是,小秋赶紧在同步块中又加了一层if判断。

public class Singleton {
    private Singleton instance = null;
    //私有构造函数
    private Singleton(){};
    
    //双重检测机制
    public   Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class){
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

帅地:脑子栋的挺快嘛,这样子基本就能保证线程安全了。嗯,很棒。这种加锁的方法也叫做双重检测机制

解释说明:当instance==null时,假如有两个线程p1,p2进入了第一个if语句,之后p1进入的同步块中,成功创建了对象实例,这时候论到p2进入同步块,由于同步块还有一层if(instance==null)的判断,又因为此时instance != null了,所以p2无法再创建新的实例对象。

小秋听到帅地夸奖自己,满脸开心....

指令重排的捣蛋

帅地:不过,你这样写,还不算是绝对的线程安全,还是有可能会出现线程安全问题。你在仔细想想。

小秋:还会出现线程安全问题?(一脸懵逼)....

一阵绞尽脑汁过后....

小秋:我觉得没啥问题啊。

帅地:好吧,你已经写的挺不错了,今天就再让你涨涨知识。

其实这个线程安全的问题,主要是因为对象的创建过程并非是原子性的。在创建的过程中,由于指令重排的影响,才导致出现问题的。

所谓指令重排就是改变了指令的执行顺序,例如代码中有两行代码:int a = 10;int b = 20;由于虚拟机指令重排的影响,编译后有可能顺序被改变了,变成这样:int b = 20;int a = 10;

且听我慢慢道来:

当我们的虚拟机在执行 instance = new Singleton这句代码时,会被分解成以下三个动作来执行:

memory = allocate();//1: 给对象分配内存空间。

ctorInstance(memory);//2: 初始化对象

instance = memory; //3: 把instance变量指向刚刚分配的内存地址。

但是,这三个动作的执行顺序并非是一成不变的,有可能经过JVM和CPU的优化编译之后,这三个动作的执行顺序发生了改变,变成了这样:

memory = allocate();//1: 给对象分配内存空间。

instance = memory; //3: 把instance变量指向刚刚分配的内存地址

ctorInstance(memory);//2: 初始化对象

现在假设instance== null,且有p1, p2两个线程来调用这个方法。当p1执行完1,3但还没有执行2时,这时instance已经不再是null了。假如这个时候p2刚刚进入getInstance这个方法,然后执行if(instance == null)的判断语句,这个时候判断的结果会是false,于是p2直接把instance给返回的。

但由于p1还没有执行动作2,此时的对象还没有被初始化,但却已经被p2给返回了。此时,这个被返回的对象出现问题了。

于是,就出现了线程安全问题。

通过volatile来保证指令重排问题

小秋:又涨知识了。

帅地:问题的根源就是指令重排的影响,所以我们只要保证在创建对象的时候,不要出现指令重排就可以了。

所以说,我们可以把instance这个变量声明为volatile。代码如下:

public class Singleton {
    private volatile Singleton instance = null;
     //私有构造函数
    private Singleton(){};
    
    public   Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class){
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

注:不清楚volatile关键字的可以看我之前写的文章:
线程安全(上)--彻底搞懂volatile关键字

这样,只有把instance声明为volatile,那么虚拟机就会保证这三个动作按照顺序执行了,也就不会出现线程安全问题了。

小秋:哇,谢谢地哥的耐心讲解呢。我要给你点个赞。

结束语

这两次的文章都采用对话的模式来写,之后的文章可能会更多的采用文字对话漫画对话的形式讲,主要是因为现在还没找到比较喜欢的漫画人物,过几天找到了,就尝试用漫画来讲。

小伙伴们如果有好的人物推荐,可以通过加我为好友或者公众号后台发给我哦,在此感谢大家的支持。

获取更多原创文章,可以关注下我的公众号:苦逼的码农,后台回复礼包送你一份时下热门的资源大礼包。同时也感谢把文章介绍给更多需要的人。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容