根据CPU核心数确定线程池并发线程数

目录

一、抛出问题

二、分析

三、实际应用

===========正文分割线=================

一、抛出问题

关于如何计算并发线程数,一般分两派,来自两本书,且都是好书,到底哪个是对的?问题追踪后,整理如下:

第一派:《Java Concurrency in Practice》即《java并发编程实践》,如下图:


如上图,在《Java Concurrency in Practice》一书中,给出了估算线程池大小的公式:

Nthreads=Ncpu*Ucpu*(1+w/c),其中

Ncpu=CPU核心数

Ucpu=cpu使用率,0~1

W/C=等待时间与计算时间的比率


第二派:《Programming Concurrency on the JVM Mastering》即《Java 虚拟机并发编程》

线程数=Ncpu/(1-阻塞系数)

二.分析

对于派系一,假设cpu100%运转,即撇开CPU使用率这个因素,线程数=Ncpu*(1+w/c)。

现在假设将派系二的公式等于派系一公式,即Ncpu/(1-阻塞系数)=Ncpu*(1+w/c),===》阻塞系数=w/(w+c),即阻塞系数=阻塞时间/(阻塞时间+计算时间),这个结论在派系二后续中得到应征,如下图:

由此可见,派系一和派系二其实是一个公式......这样我就放心了......


三、实际应用

那么实际使用中并发线程数如何设置呢?分析如下(我们以派系一公式为例):

Nthreads=Ncpu*(1+w/c)

IO密集型:一般情况下,如果存在IO,那么肯定w/c>1(阻塞耗时一般都是计算耗时的很多倍),但是需要考虑系统内存有限(每开启一个线程都需要内存空间),这里需要上服务器测试具体多少个线程数适合(CPU占比、线程数、总耗时、内存消耗)。如果不想去测试,保守点取1即,Nthreads=Ncpu*(1+1)=2Ncpu。这样设置一般都OK。

计算密集型:假设没有等待w=0,则W/C=0. Nthreads=Ncpu。

至此结论就是:

IO密集型=2Ncpu(可以测试后自己控制大小,2Ncpu一般没问题)(常出现于线程中:数据库数据交互、文件上传下载、网络数据传输等等)

计算密集型=Ncpu(常出现于线程中:复杂算法)

java中:Ncpu=Runtime.getRuntime().availableProcessors()

=========================此处可略过=============================================

当然派系一种《Java Concurrency in Practice》还有一种说法,

即对于计算密集型的任务,在拥有N个处理器的系统上,当线程池的大小为N+1时,通常能实现最优的效率。(即使当计算密集型的线程偶尔由于缺失故障或者其他原因而暂停时,这个额外的线程也能确保CPU的时钟周期不会被浪费。)

即,计算密集型=Ncpu+1,但是这种做法导致的多一个cpu上下文切换是否值得,这里不考虑。读者可自己考量。

======================================================================

四、总结

选择线程池并发线程数的因素很多:任务类型、内存等线程中使用到所有资源都需要考虑。本文经过对现有文献的分析论证,得出结论,并给出了实际应用公式,实乃工程师之福利,技术之典范......

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,271评论 5 466
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,725评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,252评论 0 328
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,634评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,549评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,985评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,471评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,128评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,257评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,233评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,235评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,940评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,528评论 3 302
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,623评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,858评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,245评论 2 344
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,790评论 2 339

推荐阅读更多精彩内容