工欲善其事,必先利其器
所有中间件及工具都是基于开源
集中式缓存 Redis
缓存是计算机的难题之一,分布式缓存亦是如此。Redis 看起来非常简单,但它影响着系统的效率、性能、数据一致性。
用好它不容易,涉及到的问题包括:缓存时长(复杂多维度的计算)、缓存失效处理(主动更新)、缓存键(Hash 和方便人工干预)、缓存内容及数据结构的选择、缓存雪崩的处理、缓存穿透的处理等。
Redis 除了缓存的功能,还有其它功能如 Lua 计算能力、Limit 与 Session 时间窗口、分布式锁等。
消息队列 RabbitMQ
消息队列好比葛洲坝,有大量数据的堆积能力,然后再可靠地进行异步输出。它是 EDA 事件驱动架构的核心,也是 CQRS 同步数据的关键。为什么选择 RabbitMQ 而没有选择 Kafka,因为业务系统有对消息的高可靠性要求,以及对复杂功能如消息确认 Ack 的要求。
集中式日志ELK
日志主要分为系统日志和应用日志两类。试想一下,你该如何在一个具有几百台服务器的集群中定位到问题?如何追踪每天产生的几 G 甚至几 T 的数据?集中式日志就是此类问题的解决方案。
早期我们使用自主研发的 Log4Net+MongoDB 来收集和检索日志信息,但随着数据量的增加,查询速度却变得越来越慢。后期改为开源的 ELK,虽然易用性有所下降,但它支持海量数据以及与编程语言无关的特征。下面是 ELK 的架构图。
任务调度 Job
任务调度 Job 如同数据库作业或 Windows 计划任务,是分布式系统中异步和批处理的关键。我们的 Job 分为 WinJob 和 HttpJob:WinJob 是操作系统级别的定时任务,使用开源的框架 Quartz.NET 实现;而 HttpJob 则是自主研发实现,采用 URL 方式可定时调用微服务。
HttpJob 借助集群巧妙地解决了 WinJob 的单点和发布问题,并集中管理所有的调度规则,调度规则有简单规则和 Cron 表达式。HttpJob 它简单易用,但间隔时间不能低于 1 分钟,毕竟通过 URL 方式来调度并不高效。下图是 HttpJob 的管理后台。
应用监控 Metrics
“没有度量就没有提升”,度量是改进优化的基础,是做好一个系统的前置条件。Zabbix 一般用于系统级别的监控,Metrics 则用于业务应用级别的监控。
业务应用是个黑盒子,通过数据埋点来收集应用的实时状态,然后展示在大屏或看板上。它是报警系统和数字化管理的基础,还可以结合集中式日志来快速定位和查找问题。我们的业务监控系统使用 Metrics.NET+InfluxDB+Grafana。
微服务框架 SpringCloud
搜索利器 Solr
分库分表后的关联查询,大段文本的模糊查询,这些要如何实现呢?显然传统的数据库没有很好的解决办法,这时可以借助专业的检索工具。
全文检索工具 Solr 不仅简单易用性能好,而且支持海量数据高并发,只需实现系统两边数据的准实时或定时同步即可。下图是 Solr 的工作原理。