深入浅出谈一下有关分布式消息技术:Kafka

Kafka的基本介绍

Kafka是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等。

主要应用场景是:日志收集系统和消息系统。

Kafka主要设计目标如下:

以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。

高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。

支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。

同时支持离线数据处理和实时数据处理。

Kafka的设计原理分析

一个典型的Kafka集群中包含若干Producer,若干Broker,若干Consumer,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举Leader,以及在Consumer Group发生变化时进行Rebalance。Producer使用push模式将消息发布到Broker,Consumer使用Pull模式从Broker订阅并消费消息。

Kafka专用术语:

Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。

Topic:一类消息,Kafka集群能够同时负责多个topic的分发。

Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。

Segment:partition物理上由多个segment组成。

offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息。

Producer:负责发布消息到Kafka broker。

Consumer:消息消费者,向Kafka broker读取消息的客户端。

Consumer Group:每个Consumer属于一个特定的Consumer Group。

Kafka消息存储格式

Topic & Partition

一个Topic可以认为一个一类消息,每个Topic将被分成多个Partition,每个Partition在存储层面是Append Log文件。

在Kafka文件存储中,同一个Topic下有多个不同Partition,每个Partition为一个目录,Partiton命名规则为Topic名称+有序序号,第一个Partiton序号从0开始,序号最大值为Partitions数量减1。

每个Partion(目录)相当于一个巨型文件被平均分配到多个大小相等Segment(段)数据文件中。但每个段Segment file消息数量不一定相等,这种特性方便old segment file快速被删除。

每个Partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。

这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。

Segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.

Segment文件命名规则:Partion全局的第一个Segment从0开始,后续每个Segment文件名为上一个Segment文件最后一条消息的Offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

Segment中index与data file对应关系物理结构如下:

上图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。

其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message),以及该消息的物理偏移地址为497。

了解到Segment data file由许多message组成,下面详细说明message物理结构如下:

参数说明:

关键字解释说明8 byte offset在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message4 byte message sizemessage大小4 byte CRC32用crc32校验message1 byte “magic"表示本次发布Kafka服务程序协议版本号1 byte “attributes"表示为独立版本、或标识压缩类型、或编码类型。4 byte key length表示key的长度,当key为-1时,K byte key字段不填K byte key可选value bytes payload表示实际消息数据。

Kafka数据传输的事务特点

At most once:最多一次,这个和JMS中"非持久化"消息类似,发送一次,无论成败,将不会重发。消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。

At least once:消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功。消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。

Exactly once:消息只会发送一次。kafka中并没有严格的去实现(基于2阶段提交),我们认为这种策略在kafka中是没有必要的。

通常情况下"at-least-once"是我们首选。

副本(replication)策略

Kafka的高可靠性的保障来源于其健壮的副本(replication)策略。

1. 副本放置策略

为了更好的做负载均衡,Kafka尽量将所有的Partition均匀分配到整个集群上。

Kafka分配Replica的算法如下:

将所有存活的N个Brokers和待分配的Partition排序

将第i个Partition分配到第(i mod n)个Broker上,这个Partition的第一个Replica存在于这个分配的Broker上,并且会作为partition的优先副本

将第i个Partition的第j个Replica分配到第((i + j) mod n)个Broker上

假设集群一共有4个brokers,一个Topic有4个partition,每个Partition有3个副本。下图是每个Broker上的副本分配情况。

2. 同步策略

Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少,Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader pull数据。这种方式上,Follower存储的数据顺序与Leader保持一致。Follower在收到该消息并写入其Log后,向Leader发送ACK。一旦Leader收到了ISR中的所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW并且向Producer发送ACK。

为了提高性能,每个Follower在接收到数据后就立马向Leader发送ACK,而非等到数据写入Log中。因此,对于已经commit的消息,Kafka只能保证它被存于多个Replica的内存中,而不能保证它们被持久化到磁盘中,也就不能完全保证异常发生后该条消息一定能被Consumer消费。

Consumer读消息也是从Leader读取,只有被commit过的消息才会暴露给Consumer。

Kafka Replication的数据流如下图所示:

对于Kafka而言,定义一个Broker是否“活着”包含两个条件:

一是它必须维护与ZooKeeper的session(这个通过ZooKeeper的Heartbeat机制来实现)。

二是Follower必须能够及时将Leader的消息复制过来,不能“落后太多”。

Leader会跟踪与其保持同步的Replica列表,该列表称为ISR(即in-sync Replica)。如果一个Follower宕机,或者落后太多,Leader将把它从ISR中移除。这里所描述的“落后太多”指Follower复制的消息落后于Leader后的条数超过预定值或者Follower超过一定时间未向Leader发送fetch请求。

Kafka只解决fail/recover,一条消息只有被ISR里的所有Follower都从Leader复制过去才会被认为已提交。这样就避免了部分数据被写进了Leader,还没来得及被任何Follower复制就宕机了,而造成数据丢失(Consumer无法消费这些数据)。而对于Producer而言,它可以选择是否等待消息commit。这种机制确保了只要ISR有一个或以上的Follower,一条被commit的消息就不会丢失。

3. 数据同步

Kafka在0.8版本前没有提供Partition的Replication机制,一旦Broker宕机,其上的所有Partition就都无法提供服务,而Partition又没有备份数据,数据的可用性就大大降低了。所以0.8后提供了Replication机制来保证Broker的failover。

引入Replication之后,同一个Partition可能会有多个Replica,而这时需要在这些Replication之间选出一个Leader,Producer和Consumer只与这个Leader交互,其它Replica作为Follower从Leader中复制数据。

4. leader选举

Leader选举本质上是一个分布式锁,有两种方式实现基于ZooKeeper的分布式锁:

节点名称唯一性:多个客户端创建一个节点,只有成功创建节点的客户端才能获得锁

临时顺序节点:所有客户端在某个目录下创建自己的临时顺序节点,只有序号最小的才获得锁

Majority Vote的选举策略和ZooKeeper中的Zab选举是类似的,实际上ZooKeeper内部本身就实现了少数服从多数的选举策略。kafka中对于Partition的leader副本的选举采用了第一种方法:为Partition分配副本,指定一个ZNode临时节点,第一个成功创建节点的副本就是Leader节点,其他副本会在这个ZNode节点上注册Watcher监听器,一旦Leader宕机,对应的临时节点就会被自动删除,这时注册在该节点上的所有Follower都会收到监听器事件,它们都会尝试创建该节点,只有创建成功的那个follower才会成为Leader(ZooKeeper保证对于一个节点只有一个客户端能创建成功),其他follower继续重新注册监听事件。

Kafka消息分组,消息消费原理

同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。

这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。

Push vs. Pull

作为一个消息系统,Kafka遵循了传统的方式,选择由Producer向broker push消息并由Consumer从broker pull消息。

push模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。push模式的目标是尽可能以最快速度传递消息,但是这样很容易造成Consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据Consumer的消费能力以适当的速率消费消息。

对于Kafka而言,pull模式更合适。pull模式可简化broker的设计,Consumer可自主控制消费消息的速率,同时Consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。

Kafak顺序写入与数据读取

生产者(producer)是负责向Kafka提交数据的,Kafka会把收到的消息都写入到硬盘中,它绝对不会丢失数据。为了优化写入速度Kafak采用了两个技术,顺序写入和MMFile。

顺序写入

因为硬盘是机械结构,每次读写都会寻址,写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最“讨厌”随机I/O,最喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。

每条消息都被append到该Partition中,属于顺序写磁盘,因此效率非常高。

对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka是不会删除数据的,它会把所有的数据都保留下来,每个消费者(Consumer)对每个Topic都有一个offset用来表示读取到了第几条数据。

即便是顺序写入硬盘,硬盘的访问速度还是不可能追上内存。所以Kafka的数据并不是实时的写入硬盘,它充分利用了现代操作系统分页存储来利用内存提高I/O效率。

在Linux Kernal 2.2之后出现了一种叫做“零拷贝(zero-copy)”系统调用机制,就是跳过“用户缓冲区”的拷贝,建立一个磁盘空间和内存空间的直接映射,数据不再复制到“用户态缓冲区”系统上下文切换减少2次,可以提升一倍性能。

通过mmap,进程像读写硬盘一样读写内存(当然是虚拟机内存)。使用这种方式可以获取很大的I/O提升,省去了用户空间到内核空间复制的开销(调用文件的read会把数据先放到内核空间的内存中,然后再复制到用户空间的内存中。)

消费者(读取数据)

试想一下,一个Web Server传送一个静态文件,如何优化?答案是zero copy。传统模式下我们从硬盘读取一个文件是这样的。

先复制到内核空间(read是系统调用,放到了DMA,所以用内核空间),然后复制到用户空间(1、2);从用户空间重新复制到内核空间(你用的socket是系统调用,所以它也有自己的内核空间),最后发送给网卡(3、4)。

Zero Copy中直接从内核空间(DMA的)到内核空间(Socket的),然后发送网卡。这个技术非常普遍,Nginx也是用的这种技术。

实际上,Kafka把所有的消息都存放在一个一个的文件中,当消费者需要数据的时候Kafka直接把“文件”发送给消费者。当不需要把整个文件发出去的时候,Kafka通过调用Zero Copy的sendfile这个函数,这个函数包括:

out_fd作为输出(一般及时socket的句柄)

in_fd作为输入文件句柄

off_t表示in_fd的偏移(从哪里开始读取)

size_t表示读取多少个

小编自己有整理更多大数据相关资料

关注我;转发文章;++我威信 bmaaa01,获取。


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容