ThreadLocal的初步认识
在正式解析ThreadLocal之前,我们先来看 一个例子:
public class ThreadLocalTest {
//创建并初始化一个ThreadLocal变量
private static ThreadLocal<Integer> cnt = new ThreadLocal<Integer>(){
@Override
protected Integer initialValue() {
return 0;
}
};
public static void main(String[] args){
System.out.println(Thread.currentThread().getName() + " before write, get cnt " + cnt.get());
cnt.set(1);
//创建线程一对ThreadLocal变量进行修改和读取
new Thread(){
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " before write, get cnt : " + cnt.get());
cnt.set(2);
System.out.println(Thread.currentThread().getName() + " after write, get cnt : " + cnt.get());
}
}.start();
//创建线程二对ThreadLocal变量进行修改和读取
new Thread(){
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " before write, get cnt : " + cnt.get());
cnt.set(3);
System.out.println(Thread.currentThread().getName() + " get cnt : " + cnt.get());
}
}.start();
//主线程进行读取
System.out.println(Thread.currentThread().getName() + " after write, get cnt : " + cnt.get());
}
}
输出结果:
main before write, get cnt 0
Thread-0 before write, get cnt : 0
Thread-0 after write, get cnt : 2
main after write, get cnt : 1
Thread-1 before write, get cnt : 0
Thread-1 get cnt : 3
程序中存在三个线程(包括主线程)对变量cnt进行修改并读取,根据结果,我们发现不同线程之间对变量的修改和读取都是独立的,互不影响的。实际上,这就是ThreadLocal的特色。
ThreadLocal在每个线程中对变量会创建一个副本,即每个线程内部都会有一个变量,且在线程内部任何地方可以使用,线程之间互不影响。
ThreadLocal的深入理解
ThreadLocal类主要提供以下几个方法:
public T get() {}
public void set(T value) {}
public void remove() {}
protected T initValue() {}
- 我们先看到initValue方法:
protected T initialValue() {
return null;
}
我们会发现这是个空方法,因此,我们在进行初始化时,必须重写该方法才能执行初始化操作。
- 接下来,我们继续解析get方法:
/**
* Returns the value in the current thread's copy of this
* thread-local variable. If the variable has no value for the
* current thread, it is first initialized to the value returned
* by an invocation of the {@link #initialValue} method.
*
* @return the current thread's value of this thread-local
*/
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
首先通过Thread.currentThread()
方法获取到当前线程,然后再根据当前线程调用getMap
方法获取到ThreadLocalMap对象。那么我们来看看getMap
方法:
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
我们可以看到它返回的是线程中的一个threadLocals
变量,而我们在Thread类中,也可以发现这个变量:
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null;
若map不为空,那么将通过map.getEntry(this)
方法来获取到Entry对象,我们来看看Entry对象到底是什么:
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
也就是说,Entry对象是ThreadLocal的一个弱引用而已,这里应该是方便GC的回收,防止内存溢出。我们继续看到getEntry方法:
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
看到这里,可能就有些懵逼了,这里的threadLocalHashCode
和table
完全不知所云。这里,我们就要回头看ThreadLocal中的一些变量:
private final int threadLocalHashCode = nextHashCode();
/**
* The next hash code to be given out. Updated atomically. Starts at
* zero.
*/
private static AtomicInteger nextHashCode =
new AtomicInteger();
/**
*The difference between successively generated hash codes - turns
* implicit sequential thread-local IDs into near-optimally spread
* multiplicative hash values for power-of-two-sized tables.
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
在这里定义了一个类型为AtomicInteger
类型的变量,即每次创建一个ThreadLocal对象,都会得到它所对应的值,因为它是自增的,然后threadLocalHashCode
变量则为该值得一个hash值。而table变量则是声明在ThreadLocalMap中:
/**
* The table, resized as necessary.
* table.length MUST always be a power of two.
*/
private Entry[] table;
它的作用为存储值,其中threadLocalHashCode
经过处理后便为ThreadLocal所对应的索引。
获取到Entry对象后,我们就可以通过Entry对象获取到所对应的值,返回即可。
若map为空,则调用setInitialValue
方法。
/**
* Variant of set() to establish initialValue. Used instead
* of set() in case user has overridden the set() method.
*
* @return the initial value
*/
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
方法中,获取到起初始值,并将当前线程与value进行绑定,存入map对象中,以便下一次的调用,若map为空,则创建map对象。
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
我们可以看到就是返回一个ThreadLocalMap对象。
- 接下来我们看到set方法:
/**
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
这里的思路很简单,就是先获取到map对象,若map不为空,则更新其值,否则创建一个map对象。
- 最后我们看到remove方法:
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}
即获取到map对象后,将map中的值移除。
注意:在使用时,若没有重写initialValue
方法,那么在调用get方法前,必须调用set方法,否则会报空指针异常。
TheadLocal的应用
通常当我们想要共享一个变量,但该变量又不是线程安全的,并且也不想通过加锁机制来降低并发性,那么就可以用ThreadLocal来维护一个线程一个实例。
- 应用一:数据库连接
public class ConnectionManager {
private static ThreadLocal<Connection> connectionHolder =
new ThreadLocal<Connection>(){
@Override
protected Connection initialValue() {
try {
return DriverManager.getConnection("localhost","username","password");
} catch (SQLException e) {
e.printStackTrace();
}
return null;
}
};
public static Connection getConnection(){
return connectionHolder.get();
}
}