GAN Lecture 2
Conditional Generation by GAN
Algorithm
In each traing iteration:
- Sample m positive examples from database
- Sample m noise samples from a distribution
- Obtaining generated data ,
- Sample m objects from database
- Update discriminator parameters to maximize
Learning D
- Sample m noise samples from a distribution
- Sample m conditions from a database
- Update generator parameters to maximize
- ,
Learning G
倾向推荐第二种网络架构
参考文献:StackGAN
参考文献:Patch GAN
参考例子:Github