coalesce
官方文档描述:
Return a new RDD that is reduced into `numPartitions` partitions.
函数原型:
def coalesce(numPartitions: Int): JavaRDD[T]
def coalesce(numPartitions: Int, shuffle: Boolean): JavaRDD[T]
源码分析:
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null) : RDD[T] = withScope {
if (shuffle) {
/** Distributes elements evenly across output partitions, starting from a random partition. */
val distributePartition = (index: Int, items: Iterator[T]) => {
var position = (new Random(index)).nextInt(numPartitions)
items.map { t =>
// Note that the hash code of the key will just be the key itself. The HashPartitioner
// will mod it with the number of total partitions.
position = position + 1
(position, t)
}
} : Iterator[(Int, T)]
// include a shuffle step so that our upstream tasks are still distributed
new CoalescedRDD(
new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
new HashPartitioner(numPartitions)),
numPartitions).values
} else {
new CoalescedRDD(this, numPartitions)
}
}
**
从源码中可以看出,当shuffle=false时,由于不进行shuffle,问题就变成parent RDD中哪些partition可以合并在一起,合并的过程依据设置的numPartitons中的元素个数进行合并处理。
当shuffle=true时,进行shuffle操作,原理很简单,先是对partition中record进行k-v转换,其中key是由 (new Random(index)).nextInt(numPartitions)+1计算得到,value为record,index 是该 partition 的索引,numPartitions 是 CoalescedRDD 中的 partition 个数,然后 shuffle 后得到 ShuffledRDD, 可以得到均分的 records,再经过复杂算法来建立 ShuffledRDD 和 CoalescedRDD 之间的数据联系,最后过滤掉 key,得到 coalesce 后的结果 MappedRDD。
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
// shuffle默认是false
JavaRDD<Integer> coalesceRDD = javaRDD.coalesce(2);
System.out.println(coalesceRDD);
JavaRDD<Integer> coalesceRDD1 = javaRDD.coalesce(2,true);
System.out.println(coalesceRDD1);
注意:
**
coalesce() 可以将 parent RDD 的 partition 个数进行调整,比如从 5 个减少到 3 个,或者从 5 个增加到 10 个。需要注意的是当 shuffle = false 的时候,是不能增加 partition 个数的(即不能从 5 个变为 10 个)。
**
repartition
官网文档描述:
Return a new RDD that has exactly numPartitions partitions.
Can increase or decrease the level of parallelism in this RDD.
Internally, this uses a shuffle to redistribute data.
If you are decreasing the number of partitions in this RDD, consider using `coalesce`,which can avoid performing a shuffle.
**
特别需要说明的是,如果使用repartition对RDD的partition数目进行缩减操作,可以使用coalesce函数,将shuffle设置为false,避免shuffle过程,提高效率。
**
函数原型:
def repartition(numPartitions: Int): JavaRDD[T]
源码分析:
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
**
从源码中可以看到repartition等价于 coalesce(numPartitions, shuffle = true)
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
//等价于 coalesce(numPartitions, shuffle = true)
JavaRDD<Integer> repartitionRDD = javaRDD.repartition(2);
System.out.println(repartitionRDD);