Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.
Example 1:
Input: [1,4,3,2]
Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).
Note:
n is a positive integer, which is in the range of [1, 10000].
All the integers in the array will be in the range of [-10000, 10000].
题目大意: 给定一个长度为2n(偶数)的数组,分成n个小组,返回每组中较小值的和sum,使sum尽量大
思路:
先排序,将相邻两个数分为一组,每组较小数都在左边,求和即可算法分析: 查看英文版请点击上方
假设对于每一对i,bi >= ai。 定义Sm = min(a1,b1)+ min(a2,b2)+ … + min(an,bn)。最大的Sm是这个问题的答案。由于bi >= ai,Sm = a1 + a2 + … + an。 定义Sa = a1 + b1 + a2 + b2 + … + an + bn。对于给定的输入,Sa是常数。 定义di = | ai - bi |。由于bi >= ai,di = bi-ai, bi = ai+di。 定义Sd = d1 + d2 + … + dn。 所以Sa = a1 + (a1 + d1) + a2 + (a2 + d2) + … + an + (an + di) = 2Sm + Sd , 所以Sm =(Sa-Sd)/ 2。为得到最大Sm,给定Sa为常数,需要使Sd尽可能小。 所以这个问题就是在数组中找到使di(ai和bi之间的距离)的和尽可能小的对。显然,相邻元素的这些距离之和是最小的。
code:
func arrayPairSum(_ nums: [Int]) -> Int {
var nums = nums.sorted(){$1 > $0}
var result:Int = 0
let length = nums.count
var j = 0
for i in 0 ..< nums.count{
if j==0 {
result += nums[i]
j = 1
}else{
j = 0
}
}
return result
}