概念
时间复杂度:用来定性的描述算法的执行时间的一个函数,更类似于一个耗时的趋势,函数表示为: O(f(n))
名词解释:
n:问题的规模,重复执行的次数
T(n):一段程序运行,各种操作代码所执行的总次数
f(n): 存在的某个函数,使得T(n)/f(n)=非零常数, 那么f(n)称为T(n)的同数量级函数
O:大O符号,一种符号,表示渐进于无穷的行为
穿起来:
算法中各种代码操作所执行的总次数用T(n)表示,存在某个函数f(n),使得T(n)/f(n)=非零常数,那么f(n)称为T(n)的同数量级函数(类想一下,在坐标轴中,当入参n趋于无穷时,两条曲线的商为常数),即:T(n)=O(f(n)),O(f(n))就是时间复杂度.O符号表示一个渐进常数. 在这个函数中可以忽略低阶项和首项系数,中文例二解释.
我们假设计算机运行一行基础代码需要执行一次运算。
int aFunc(void) {
printf("Hello, World!\n"); // 需要执行 1 次
return 0; // 需要执行 1 次
}
那么上面这个方法需要执行 2 次运算
int aFunc(int n) {
for(int i = 0; i<n; i++) { // 需要执行 (n + 1) 次
printf("Hello, World!\n"); // 需要执行 n 次
}
return 0; // 需要执行 1 次
}
这个方法需要 (n + 1 + n + 1) = 2n + 2 次运算。
我们把 算法需要执行的运算次数 用 输入大小n 的函数 表示,即 T(n) 。
此时为了 估算算法需要的运行时间 和 简化算法分析,我们引入时间复杂度的概念。
定义:存在常数 c 和函数 f(N),使得当 N >= c 时 T(N) <= f(N),表示为 T(n) = O(f(n)) 。
如图:
当 N >= 2 的时候,f(n) = n^2 总是大于 T(n) = n + 2 的,于是我们说 f(n) 的增长速度是大于或者等于 T(n) 的,也说 f(n) 是 T(n) 的上界,可以表示为 T(n) = O(f(n))。
因为f(n) 的增长速度是大于或者等于 T(n) 的,即T(n) = O(f(n)),所以我们可以用 f(n) 的增长速度来度量 T(n) 的增长速度,所以我们说这个算法的时间复杂度是 O(f(n))。
算法的时间复杂度,用来度量算法的运行时间,记作: T(n) = O(f(n))。它表示随着 输入大小n 的增大,算法执行需要的时间的增长速度可以用 f(n) 来描述。
显然如果 T(n) = n^2,那么 T(n) = O(n^2),T(n) = O(n^3),T(n) = O(n^4) 都是成立的,但是因为第一个 f(n) 的增长速度与 T(n) 是最接近的,所以第一个是最好的选择,所以我们说这个算法的复杂度是 O(n^2) 。
那么当我们拿到算法的执行次数函数 T(n) 之后怎么得到算法的时间复杂度呢?
- 我们知道常数项对函数的增长速度影响并不大,所以当 T(n) = c,c 为一个常数的时候,我们说这个算法的时间复杂度为 O(1);如果 T(n) 不等于一个常数项时,直接将常数项省略。
比如
第一个 Hello, World 的例子中 T(n) = 2,所以我们说那个函数(算法)的时间复杂度为 O(1)。
T(n) = n + 29,此时时间复杂度为 O(n)。
- 我们知道高次项对于函数的增长速度的影响是最大的。n^3 的增长速度是远超 n^2 的,同时 n^2 的增长速度是远超 n 的。 同时因为要求的精度不高,所以我们直接忽略低此项。
比如
T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。
- 因为函数的阶数对函数的增长速度的影响是最显著的,所以我们忽略与最高阶相乘的常数。
比如
T(n) = 3n^3,此时时间复杂度为 O(n^3)。
综合起来:如果一个算法的执行次数是 T(n),那么只保留最高次项,同时忽略最高项的系数后得到函数 f(n),此时算法的时间复杂度就是 O(f(n))。为了方便描述,下文称此为 大O推导法。
由此可见,由执行次数 T(n) 得到时间复杂度并不困难,很多时候困难的是从算法通过分析和数学运算得到 T(n)。对此,提供下列四个便利的法则,这些法则都是可以简单推导出来的,总结出来以便提高效率。
- 对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个
循环的时间复杂度为 O(n×m)。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
此时时间复杂度为 O(n × 1),即 O(n)。
- 对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c...,则这个循环的时间复杂度为 O(n×a×b×c...)。分析的时候应该由里向外分析这些循环。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
for(int j = 0; j < n; j++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
}
此时时间复杂度为 O(n × n × 1),即 O(n^2)。
- 对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。
void aFunc(int n) {
// 第一部分时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
// 第二部分时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
- 对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。
void aFunc(int n) {
if (n >= 0) {
// 第一条路径时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("输入数据大于等于零\n");
}
}
} else {
// 第二条路径时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("输入数据小于零\n");
}
}
}
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
时间复杂度分析的基本策略是:从内向外分析,从最深层开始分析。如果遇到函数调用,要深入函数进行分析。
最后,我们来练习一下
一. 基础题
求该方法的时间复杂度
void aFunc(int n) {
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
printf("Hello World\n");
}
}
}
参考答案:
当 i = 0 时,内循环执行 n 次运算,当 i = 1 时,内循环执行 n - 1 次运算……当 i = n - 1 时,内循环执行 1 次运算。
所以,执行次数 T(n) = n + (n - 1) + (n - 2)……+ 1 = n(n + 1) / 2 = n^2 / 2 + n / 2。
根据上文说的 大O推导法 可以知道,此时时间复杂度为 O(n^2)。
二. 进阶题
求该方法的时间复杂度
void aFunc(int n) {
for (int i = 2; i < n; i++) {
i *= 2;
printf("%i\n", i);
}
}
参考答案:
假设循环次数为 t,则循环条件满足 2^t < n。
可以得出,执行次数t = log(2)(n),即 T(n) = log(2)(n),可见时间复杂度为 O(log(2)(n)),即 O(log n)。
三. 再次进阶
求该方法的时间复杂度
long aFunc(int n) {
if (n <= 1) {
return 1;
} else {
return aFunc(n - 1) + aFunc(n - 2);
}
}
参考答案:
显然运行次数,T(0) = T(1) = 1,同时 T(n) = T(n - 1) + T(n - 2) + 1,这里的 1 是其中的加法算一次执行。
显然 T(n) = T(n - 1) + T(n - 2) 是一个斐波那契数列,通过归纳证明法可以证明,当 n >= 1 时 T(n) < (5/3)^n,同时当 n > 4 时 T(n) >= (3/2)^n。
所以该方法的时间复杂度可以表示为 O((5/3)^n),简化后为 O(2^n)。
可见这个方法所需的运行时间是以指数的速度增长的。如果大家感兴趣,可以试下分别用 1,10,100 的输入大小来测试下算法的运行时间,相信大家会感受到时间复杂度的无穷魅力。
2.1 时间复杂度为:O(1)
public void fun1() {
int n = 100;//没有入参变量,执行规模永远为1行
}
2.2 时间复杂度为:O(n)
public void fun1() {
int n = 100;//执行次数:1
int sum = 0;//执行次数:1
for (int j = 1; j <= n; ++j) {//执行次数:n
sum += j;//执行次数:n
}
}
所以T(n)=1+1+n+n=2n+2 = n,即时间复杂度为:O(n),时间复杂度是表示一个函数的趋势,并不代表具体值,当n趋于无穷大时,可以忽略低阶项和首项系数
2.3 时间复杂度为:O(n²)
public void fun1() {
int n = 100;//执行次数:1
int sum = 0;//执行次数:1
for (int i = 1; i <= n; ++i) {//执行次数:n
for (int j = 1; j <= n; ++j) {//执行次数:n*n
sum += j;//执行次数:n*n
}
}
}
T(n)=1+1+n+nn+nn=2n²+2n+2=n²
常规的代码的算法是有规律的:看几重循环:只有一重则时间复杂度为O(n),二重为O(n^2);如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。
分类:
常见时间复杂度有(按增长率):
1.常数阶O(1)
2.对数阶O(logn)
3.线性阶O(n)
4.线性对数阶O(nlog2n)
5.k方阶:O(n^k),一般控制k的大小,否则就和指数阶一样了,这是很可怕的
6.指数阶:O(2^n),一般不用,性能太差
总结
1.首先时间复杂度函数并非是确定的, 只需要总的执行次数越往后一定比本来函数的执行次数高,就都可以成为求时间复杂度的函数?
2.计算执行次数,遇到并列的相加就可以,
遇到if分支,就看哪个分支的执行次数更高,
遇到循环比较费劲, 主要看执行变量是否有变化,
如果执行变量没有变化, 则嵌套循环时,相乘即可.
如果执行变量在过程当中有变化, 比如进阶题1,就开始难了,,
遇到函数,则要把所有调用的函数全按照上面的规则都计算一下?
问题
1.对数 log 以 2为底的时候,底数能省略不写?
因为log以2为底,n的对数,和以3为底n的对数,以及x为底,n的对数,在第一象限内,他们的增长速度都是很缓慢的,所以都可记为log,而不用管底数
2.for(int i=0;i<n;i++) 不应该是被执行了n次吗?为什么是n+1次?
你有疑问是对的。
这里严格来说确实不准确,
for(int i=0;i<n;i++) 其实是
int i=0;
while(i<n){
......
i++;
}
运算次数其实不少,但是时间复杂度是衡量程序运行时间随输入大小变化的量级,所以不需要太准确。
就好像我们说这辆车的车速很快,超过120。
于是我们用 超过120 这个量级表示 这个车的速度。
这种时候,具体是121,122,125并不重要。
用 A 来表示 B,从而可以忽略不重要的东西,把精力集中在更加重要的地方。
时间复杂度就是这样,通俗地理解就是用 一个函数(随x的增长速度) 来表示一段程序的运行时间随输入大小变化的速度。
问:3.
请问能否给这句话加上证明?“显然如果 T(n) = n^2,那么 T(n) = O(n^2),T(n) = O(n^3),T(n) = O(n^4) 都是成立的,但是因为第一个 f(n) 的增长速度与 T(n) 是最接近的,所以第一个是最好的选择,所以我们说这个算法的复杂度是 O(n^2) 。”
如果 T(n) = n^2,那么 T(n) = O(n^2),T(n) = O(n^3),T(n) = O(n^4) 都是成立的。
这是根据文中T(n) = O(f(n))的定义得来的,通俗地说,就是如果存在一个数,当x大于这个数的时候,T(x)总是小于f(x),这时候我们说T(n) = O(f(n))。你可以看上面的图示和图下面的两段话,比较容易理解。
第一个 f(n) 的增长速度与 T(n) 是最接近的,这个求下导数就知道哪个增长速率接近了。