what is RCNN|Rich feature hierarchies for accurate object detection and semantic segmentation

文章摘选自多篇文章,仅用于学习,在此表示感谢,若有侵权请联系,感谢


Abstract

        过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上下文环境的复杂融合系统。在这篇论文里,我们提出了一种简单并且可扩展的检测算法,可以将mAP在VOC2012最好结果的基础上提高30%以上——达到了53.3%。我们的方法结合了两个关键的因素:1)在候选区域上自下而上使用大型卷积神经网络(CNNs),用以定位和分割物体。2)当带标签的训练数据不足时,先针对辅助任务进行有监督预训练,再进行特定任务的调优,就可以产生明显的性能提升。因为我们把region proposal和CNNs结合起来,所以该方法被称为R-CNN:Regions with CNN features。我们也把R-CNN效果跟OverFeat比较了下(OverFeat是最近提出的在与我们相似的CNN特征下采用滑动窗口进行目标检测的一种方法),结果发现RCNN在200类ILSVRC2013检测数据集上的性能明显优于OVerFeat。

Introduction

特征很重要。在过去十年,各类视觉识别任务基本都建立在对SIFT[29]和HOG[7]特征的使用。但如果我们关注一下PASCAL VOC对象检测[15]这个经典的视觉识别任务,就会发现,2010-2012年进展缓慢,取得的微小进步都是通过构建一些集成系统和采用一些成功方法的变种才达到的。

SIFT和HOG是块方向直方图(blockwise orientation histograms),一种类似大脑初级皮层V1层复杂细胞的表示方法。但我们知道识别发生在多个下游阶段,(我们是先看到了一些特征,然后才意识到这是什么东西)也就是说对于视觉识别来说,更有价值的信息,是层次化的,多个阶段的特征。

Fukushima的“neocognitron,一种受生物学启发用于模式识别的层次化、移动不变性模型,算是这方面最早的尝试。然而neocognitron缺乏监督学习算法。Lecun等人的工作表明基于反向传播的随机梯度下降(SGD)对训练卷积神经网络(CNNs)非常有效,CNNs被认为是继承自neocognitron的一类模型。

CNNs在1990年代被广泛使用,但随即便因为SVM的崛起而淡出研究主流。2012年,Krizhevsky等人在ImageNet大规模视觉识别挑战赛(ILSVRC)上的出色表现重新燃起了世界对CNNs的兴趣(AlexNet)。他们的成功在于在120万的标签图像上使用了一个大型的CNN,并且对LeCUN的CNN进行了一些改造(比如ReLU和Dropout Regularization)。

这个ImangeNet的结果的重要性在ILSVRC2012 workshop上得到了热烈的讨论。提炼出来的核心问题是:ImageNet上的CNN分类结果在何种程度上能够应用到PASCAL VOC挑战的物体检测任务上?

我们通过连接图像分类和目标检测,回答了这个问题。本论文是第一个说明在PASCAL VOC的物体检测任务上CNN比基于简单类HOG特征的系统有大幅的性能提升。我们主要关注了两个问题:使用深度网络定位物体和在小规模的标注数据集上进行大型网络模型的训练。

与图像分类不同的是检测需要定位一个图像内的许多物体。一个方法是将框定位看做是回归问题。但Szegedy等人的工作说明这种策略并不work(在VOC2007上他们的mAP是30.5%,而我们的达到了58.5%)。

另一个可替代的方法是使用滑动窗口探测器,通过这种方法使用CNNs至少已经有20年的时间了,通常用于一些特定的种类如人脸,行人等。为了获得较高的空间分辨率,这些CNNs都采用了两个卷积层和两个池化层。我们本来也考虑过使用滑动窗口的方法,但是由于网络层次更深,输入图片有非常大的感受野(195×195)and 步长(32×32),这使得采用滑动窗口的方法充满挑战。

我们是通过操作”recognition using regions”范式,解决了CNN的定位问题。测试时,对这每张图片,产生了接近2000个与类别无关的region proposal,对每个CNN抽取了一个固定长度的特征向量,然后借助专门针对特定类别数据的线性SVM对每个区域进行分类。我们不考虑region的大小,使用放射图像变形的方法来对每个不同形状的region proposal产生一个固定长度的作为CNN输入的特征向量(也就是把不同大小的proposal放到同一个大小)。图1展示了我们方法的全貌并突出展示了一些实验结果。由于我们结合了Region proposals和CNNs,所以起名R-CNN:Regions with CNN features。

检测中面对的第二个挑战是标签数据太少,现在可获得的数据远远不够用来训练一个大型卷积网络。传统方法多是采用无监督与训练,再进行有监督调优。本文的第二个核心贡献是在辅助数据集(ILSVRC)上进行有监督预训练,再在小数据集上针对特定问题进行调优。这是在训练数据稀少的情况下一个非常有效的训练大型卷积神经网络的方法。我们的实验中,针对检测的调优将mAP提高了8个百分点。调优后,我们的系统在VOC2010上达到了54%的mAP,远远超过高度优化的基于HOG的可变性部件模型(deformable part model,DPM)

【DPM:多尺度形变部件模型,连续获得07-09的检测冠军,2010年其作者Felzenszwalb Pedro被VOC授予”终身成就奖”。DPM把物体看成了多个组成的部件(比如人脸的鼻子、嘴巴等),用部件间的关系来描述物体,这个特性非常符合自然界很多物体的非刚体特征。DPM可以看做是HOG+SVM的扩展,很好的继承了两者的优点,在人脸检测、行人检测等任务上取得了不错的效果,但是DPM相对复杂,检测速度也较慢,从而也出现了很多改进的方法。】

我们的系统也很高效,都是小型矩阵向量相乘和贪婪NMS这些特定类别的计算。这个计算特性源自于特征在不同类别之间的共享(对于不同类别,CNNC提取到的特征是一样的),这比之前使用的区域特征少了两个数量级的维度。

NMS 非极大值抑制

代码实现:https://blog.csdn.net/Quincuntial/article/details/78815187

HOG-like特征的一个优点是简单性:能够很容易明白提取到的特征是什么,那我们能可视化出CNNC提取到的特征吗?全连接层有超过5千4百万的参数值,这是关键吗?这些都不是,我们将CNN切断,会发现,移除掉其中94%的参数,精度只会下降一点点。相反,通过网络中的探测单元我们可以看到卷积层学习了一组丰富的特性。

分析我们方法的失败案例,对于进一步提高很有帮助,所以我们借助Hoiem等人的定位分析工具做实验结果的报告和分析。分析结果,我们发发现主要的错误是因为mislocalization,而使用了bounding box regression之后,可以有效的降低这个错误。

介绍技术细节之前,我们提醒大家由于R-CNN是在推荐区域上进行操作,所以可以很自然地扩展到语义分割任务上。只要很小的改动,我们就在PASCAL VOC语义分割任务上达到了很有竞争力的结果,在VOC2011测试集上平均语义分割精度达到了47.9%。

2.Objectdetection with R-CNN

物体检测系统有三个模块构成。第一个,产生类别无关的region proposal。这些推荐定义了一个候选检测区域的集合;第二个是一个大型卷积神经网络,用于从每个区域抽取特定大小的特征向量;第三个是一个指定类别的线性SVM。

2.1.Module design 

区域推荐(region proposal)

近来有很多研究都提出了产生类别无关区域推荐的方法。比如: objectness(物体性),selective search(选择性搜索),category-independent object proposals(类别无关物体推荐),constrained parametric min-cuts(受限参最小剪切, CPMC),multi-scal combinatorial grouping(多尺度联合分组),以及Ciresan等人的方法,将CNN用在规律空间块裁剪上以检测有丝分裂细胞,也算是一种特殊的区域推荐类型。由于R-CNN对特定区域算法是不关心的,所以我们采用了选择性搜索以方便和前面的工作进行可控的比较。

特征提取(Feature extraction)

我们使用Krizhevsky等人所描述的CNN的一个Caffe实现版本对每个推荐区域抽取一个4096维度的特征向量把一个输入为277*277大小的图片,通过五个卷积层和两个全连接层进行前向传播,最终得到一个4096-D的特征向量。读者可以参考AlexNet获得更多的网络架构细节

为了计算region proposal的特征,我们首先要对图像进行转换,使得它符合CNNC的输入(架构中的CNNC只能接受固定大小:277*277)。这个变换有很多办法,我们使用了最简单的一种。无论候选区域是什么尺寸和宽高比,我们都把候选框变形成想要的尺寸。具体的,变形之前,我们现在候选框周围加上16的padding,再进行各向异性缩放。 这种形变使得mAp提高了3到5个百分点。在补充材料中,作者对比了各向异性和各向同性缩放缩放方法。

2.2.Test-time detection 

测试阶段,在测试图像上使用selective search抽取2000个推荐区域(实验中,我们使用了选择性搜索的快速模式)。然后变形每一个推荐区域,再通过CNN前向传播计算出特征。然后我们使用对每个类别训练出的SVM给整个特征向量中的每个类别单独打分。

然后给出一张图像中所有的打分区域,然后使用NMS(每个类别是独立进行的),拒绝掉一些和高分区域的IOU大于阈值的候选框。

运行时的分析 两个特性让检测变得很高效。首先,所有的CNN参数都是跨类别共享的。其次,通过CNN计算的特征向量相比其他通用方法(比如spatial pyramids with bag-of-visual-word encodings)维度是很低的。UVA检测系统的特征比我们的要多两个数量级(360k vs 4k)。

这种共享的结果就是计算推荐区域特征的耗时可以分摊到所有类别的头上(GPU:每张图13s,CPU:每张图53s)。唯一的和具体类别有关的计算是特征向量和SVM权重和点积,以及NMS。实践中,所有的点积都可以批量化成一个单独矩阵间运算。特征矩阵的典型大小是2000×4096,SVM权重的矩阵是4096xN,其中N是类别的数量。

分析表明R-CNN可以扩展到上千个类别,而不需要借用近似技术(如hashing)。及时有10万个类别,矩阵乘法在现代多核CPU上只需要10s而已。但这种高效不仅仅是因为使用了区域推荐和共享特征。由于较高维度的特征,UVA系统存储100k linear predictors需要134GB的内存,而我们只要1.5GB,比我们高了两个数量级。

有趣的是R-CCN和最近Dean等人使用DPMs和hashing做检测的工作相比,他们用了1万个干扰类, 每五分钟可以处理一张图片,在VOC2007上的mAP能达到16%。我们的方法1万个检测器由于没有做近似,可以在CPU上一分钟跑完,达到59%的mAP(3.2节)。


selective search

论文:Selective Search for Object Recoginition

selective search的策略是,既然是不知道尺度是怎样的,那我们就尽可能遍历所有的尺度好了,但是不同于暴力穷举,我们可以先利用基于图的图像分割的方法得到小尺度的区域,然后一次次合并得到大的尺寸就好了,这样也符合人类的视觉认知。既然特征很多,那就把我们知道的特征都用上,但是同时也要照顾下计算复杂度,不然和穷举法也没啥区别了。最后还要做的是能够对每个区域进行排序,这样你想要多少个候选我就产生多少个,不然总是产生那么多你也用不完不是吗?

算法:

1: 利用切分方法得到候选的区域集合R = {r1,r2,…,rn}

2: 初始化相似集合S = ϕ

3: for each 遍历邻居区域对(ri,rj) do

4:        计算相似度s(ri,rj)

5:        S = S ∪ s(ri,rj)

6:  while S not=ϕ do

7:        从S中得到最大的相似度s(ri,rj)=max(S)

8:        合并对应的区域rt = ri ∪ rj

9:        移除ri对应的所有相似度:S = S\s(ri,r*)

10:        移除rj对应的所有相似度:S = S\s(r*,rj)

11:        计算rt对应的相似度集合St

12:        S = S ∪ St

13:        R = R ∪ rt

14: L = R中所有区域对应的边框


bounding box regression

下图所示,绿色框为实际标准的卡宴车辆框,即Ground Truth;黄色框为selective search算法得出的建议框,即Region Proposal。即使黄色框中物体被分类器识别为卡宴车辆,但是由于绿色框和黄色框IoU值并不大,所以最后的目标检测精度并不高。采用回归器是为了对建议框进行校正,使得校正后的Region Proposal与selective search更接近, 以提高最终的检测精度。论文中采用bounding-box回归使mAP提高了3~4%。

回归器如何设计:找到中心点坐标。宽和高的线性变换

https://blog.csdn.net/wopawn/article/details/52133338

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容