论文 | SiamFC 深度学习方法在目标跟踪领域的破冰之作

SiamFC

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. S. (2016). Fully-Convolutional Siamese Networks for Object Tracking. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, 850–865. https://doi.org/10.1007/978-3-319-48881-3_56

1 简介

​ 在跟踪任务中,需要跟踪的目标是通过起始帧的选择框给出的。框中可能是任意物体,甚至只是物体的某个部分。由于给定跟踪目标的不确定性,我们无法做到提前准备好数据,并且训练出一个具体的(specific)detector。过去几年出现了TLD,Struck和KCF等优秀的算法,但由于上述原因,用于跟踪的模型往往是一个简单模型,通过在线训练,来进行下一帧的更新。

​ 本文提出了一种基于相似度学习(similarity learning)的跟踪器SiamFC,通过进行离线训练,线上的跟踪过程只需预测即可。这使得SiamFC在性能可观的同时,还达到了超过实时的帧率(58 fps & 86 fps @ VOT-15)。

​ 同时作者还使用了ILSVRC目标检测数据集来进行相似度学习的训练,验证了该数据集训练得到的模型在ALOV/OTB/VOT等跟踪数据集中拥有较好泛化能力。

2 相似度学习

​ SiamFC通过使用相似度学习的方法来解决追踪任意目标的问题。

​ 使用函数f(z,x)来比较模板图像z域候选图像x的相似度,相似度越高,则得分越高。为了找到在下一帧图像中目标的位置,我们测试所有所有目标可能出现的位置,将相似度最大的位置作为目标的预测位置。而函数f是通过视频数据集中给定的物体运动轨迹进行训练得到的。

​ 本文使用深度卷积网络来作为函数f,使用Siamese网络的结构,如下图。

4.png

​ Siamese网络使用同一个变换函数\varphi来对两个输入进行处理,之后将得到的特征使用函数g进行混合。
f(z,x)=g(\varphi(z),\varphi(x))
​ 当函数g为简单的几何距离或相似度矩阵时,函数\varphi就可以理解为一种嵌入(embedding),类似于NLP中的词嵌入,简单来说就是一种提取特征的词典。Siamese网络过去被用于人脸识别,关键点识别,one-shot字符识别等任务中。

​ 更进一步地,本文提出了一种全卷积的Siamese网络,称为SiamFC。全卷积的结构可以直接将模板图像与大块的候选区域进行匹配,全卷积网络最后的输出就为我们需要的响应图。在响应图中寻找响应值最高的一点,该点在候选区域中的对应部分,就是预测的目标位置。也可以用感受野来理解,上图中输出的小红点和小蓝点,对应在输入层的感受野就是输入图像x中的红色区域和蓝色区域。

​ 整个网络的核心架构就是这样,还有一些细节,比如在训练时,如果候选框超出了图像区域,本文会使用图像的平均像素来进行Padding,如下图。

6.png

3 结论

7.png

​ SiamFC在使用深度学习方法的跟踪器中,很难得的达到了超实时的高帧率,甩开在此之前的网络几条大街。后来的基于深度学习放大的跟踪器也多数在follow此方法,进行改良性创新。所以此篇论文颇具里程碑意义,值得一读。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,784评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,745评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,702评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,229评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,245评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,376评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,798评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,471评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,655评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,485评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,535评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,235评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,793评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,863评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,096评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,654评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,233评论 2 341