闲着无聊想了解一些大数据&机器学习方面的竞赛,在网上看到大神们对这几个竞赛的推荐,自己查询了解了一下,分享出来给感兴趣的小伙伴们。(自己水平有限只能膜拜大神们了)
天池大数据竞赛
2015年3月23日,阿里云计算宣布启动新一赛季的天池大数据竞赛。大赛将吸引全球新生代数据科学家,为预测手机党购物喜好、余额宝资金流动、时尚穿衣搭配,提供更精准的数据分析模型。
这里还是要推荐下小编的大数据学习QQ群:532218147,不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2017最新的大数据资料和0基础入门教程,欢迎初学和进阶中的小伙伴。在不忙的时间我会给解答
能学到什么?(引用知乎 Cyber大神的回答)
如果你了解过这次比赛,你会发现这次天池比赛的趣味性与挑战性挺大,涉及到自然语言处理,图像深度学习以及排序优化等搜索技术相关内容。为了做好这次比赛,需要自学相关内容,比如简单的TF-IDF向量化文本,通过cos计算相似来评价商品相关性,目前自然语言处理来评价文本搜索相关性在kaggle有个非常值得推荐的一个比赛Crowdflower Search Results Relevance,github有冠军源码。由于题目提供图像数据 ,需要图像深度学习知识,比如卷积神经网络降维提取图像特征做以图搜图技术,线下可以用VGG-net和caffe等工具,后来发现python的Keras也挺好用的。为了做好排序会去研究Learning to Rank算法,比如目前排序场景中效果很好的Listwise方法LambdaMART,不过由于题目数据特征所限,最终我们只能采用简单而有效的Pointwise方式的分类器GDBT预测方案,线下学到的高大上方法在比赛中效果有时并不好,需要坚持也需要Plan B。但高大上知识在找工作面试中特别有用,会让你优秀地让面试官无法直视。天池比赛有时需要模型算法,更重要的是注重业务,根据业务知识提取特征,特别是统计特征,可能没参加比赛前很难理解特征决定上限的这个真理。天池复赛是真正意义上的大数据,提供海量数据和免费使用天池ODPS机会,可以采用MapReduce或者ODPS的Hive自定义函数进行分布式机器学习任务,在特征提取采用MapReduce非常方便,能同时调用几千个节点甚至几万个节点,这真的非常cool & 过瘾,期间也会遇到数据倾斜问题,如何解决非常有挑战性。如果能进入比赛答辩还有进一步提升机会,赛后交流能了解更多大神思路。
Kaggle
Kaggle是由联合创始人、首席执行官安东尼·高德布卢姆(Anthony Goldbloom)2010年在墨尔本创立的,主要为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台。
Kaggle的比赛究竟锻炼的是什么能力?(引用知乎 Naiyan Wang大神的回答)
首先说,绝大部分的Kaggle比赛是Data Mining(DM)比赛(除少数是和Discrete Optimization还有Computer Vision(CV) 有关),最重要的是和Machine Learning(ML)关系不大。这是很多人一个误区,往往希望在Kaggle上学到很多ML的知识。Kaggle教给我的第一件事情,就是让我清晰领会到了这两者之间的不同:ML一般从模型或者算法出发,讲的是模型或者算法本身存在的不合理的地方,然后提出新的假设,从而去优化模型或算法。在这个过程中并不针对某一个具体的特殊的问题。而DM恰恰相反,它是从数据本身问题本身出发,希望针对问题的特性来设计最适合的方案。关键是在于对问题和数据的理解。之前总是觉得,DM/CV的paper都好水,到处找一个应用套。在我想明白这个问题之后,我就开始懂得欣赏DM/CV的paper。
其次,我觉得在一个DM的比赛中,最能锻炼到的是对于数据的"嗅觉"。举一个最有趣的例子,往往在比赛中会存在Data Leakage的情况,也就是说,某些和label相关的信息不小心会泄漏在feature中。有人通过这样的feature取得了很好的成绩之后,往往有人觉得非常鄙视。当然我不是说Data Leakage是一件好事情,但是在这背后往往隐藏的是发现leakage的人对于数据本身深刻的认识。这并不是每个人都能做到的。换句话讲,就算没有leakage,这群人还是会排名很前。在Kaggle的比赛中,能收获最大的就是这种嗅觉。这其实也把我自己训练成了一个data believer:也许一次两次的巧合真的是意外,但是如果巧合总是持续发生,那么背后一定有一个原因。
DataCastle
DC是中国最大的数据科学竞赛平台,致力于通过最优秀的数据科学家的力量解决复杂的大数据问题。通过来自不同行业、各种规模的公司/组织在平台上发布数据及问题,以众包的方式,获得科学的最优的数据结果和解决方案。DC拥有来自全国各地的高校学子、大数据领域研究学者、企业技术精英, 为不同的行业、各种规模的公司与组织提供科学的最优的数据结果及解决方案。参赛者除了获得奖金和经验外,还可以通过平台相互学习,提升自身能力,在竞赛中收获知识、财富、名誉和乐趣。