You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
Solution1:HashMap (Tree版的累积的two sum问题)
思路:
So the idea is similar as Two sum, using HashMap to store ( key : the prefix sum, value : how many ways get to this prefix sum) , and whenever reach a node, we check if prefix sum - target exists in hashmap or not, if it does, we added up the ways of prefix sum - target into res.
Time Complexity: O(N) Space Complexity: O(N)
Solution2:DFS
思路:
Time Complexity: O(N^2) Space Complexity: O(N)
Solution1a 全局Code:
class Solution1a {
public int pathSum(TreeNode root, int sum) {
HashMap<Integer, Integer> preSum = new HashMap();
preSum.put(0, 1);
helper(root, 0, sum, preSum);
return count;
}
private int count = 0;
public void helper(TreeNode root, int currSum, int target, HashMap<Integer, Integer> preSum) {
if (root == null) {
return;
}
currSum += root.val;
count += preSum.getOrDefault(currSum - target, 0);
preSum.put(currSum, preSum.getOrDefault(currSum, 0) + 1);
helper(root.left, currSum, target, preSum);
helper(root.right, currSum, target, preSum);
preSum.put(currSum, preSum.get(currSum) - 1); // backtrack
}
}
Solution1b Code:
class Solution {
public int pathSum(TreeNode root, int sum) {
HashMap<Integer, Integer> preSum = new HashMap();
preSum.put(0,1);
return helper(root, 0, sum, preSum);
}
public int helper(TreeNode root, int currSum, int target, HashMap<Integer, Integer> preSum) {
if (root == null) {
return 0;
}
currSum += root.val;
int res = preSum.getOrDefault(currSum - target, 0);
preSum.put(currSum, preSum.getOrDefault(currSum, 0) + 1);
res += helper(root.left, currSum, target, preSum) + helper(root.right, currSum, target, preSum);
preSum.put(currSum, preSum.get(currSum) - 1);
return res;
}
}
Solution2 Code:
class Solution {
public int pathSum(TreeNode root, int sum) {
if(root == null)
return 0;
return findPath(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
}
public int findPath(TreeNode root, int sum){
int res = 0;
if(root == null)
return res;
if(sum == root.val)
res++;
res += findPath(root.left, sum - root.val);
res += findPath(root.right, sum - root.val);
return res;
}
}