Python入门:数据分析步骤

教程来自扇贝编程

广义的数据分析可以分为五个步骤:定义问题、获取数据、清洗数据、分析数据、报告结论。

定义问题

我们可以从两个方面来思考:是描述还是推断?前者倾向于关注我们看见的数据是什么样的,而后者倾向于我们可以基于数据对未知情况做出什么样的预测。举个例子,我们看见下面一组数据:

# 每日学习时长(分钟)
learn_time = {"老王":30, "阿强":5, "妞妞":13, "小赵":0, "张小明":22}
# Python项目完成度
project_complete = {"老王":1, "阿强":0.1, "妞妞":0.2, "小赵":0.0, "张小明":0.7}

上方示例中,我们看到 Python 学员每天学习 Python 的时间以及项目的完成水平,我们据此提出两个问题:
1)有两个学员的每天学习时长超过20分钟;
2)新学员萌仔的项目完成度在0.9,TA的每日学习时长大于20分钟。
上述两个问题中,第一个问题是描述性问题,而第二个问题是推断性问题。

survey = "https://stackoverflow.blog/2017/09/06/incredible-growth-python/"
SO_question = {2012:0.040, 2013:0.045, 2014:0.050, 2015:0.060, 2016: 0.075, 2017: 0.09, 2018: 0.10}

print("据统计在网站Stack Overflow上:")
for year, perc in SO_question.items():
    print("{year}年,关于Python的提问占比为{perc}%".format(year = year, perc = perc*100))
print("报告来源:"+survey)

# 输出:
# 据统计在网站Stack Overflow上:
# 2012年,关于Python的提问占比为4.0%
# 2013年,关于Python的提问占比为4.5%
# 2014年,关于Python的提问占比为5.0%
# 2015年,关于Python的提问占比为6.0%
# 2016年,关于Python的提问占比为7.5%
# 2017年,关于Python的提问占比为9.0%
# 2018年,关于Python的提问占比为10.0%
# 报告来源:https://stackoverflow.blog/2017/09/06/incredible-growth-python/

获取数据

有时候,我们可以根据看到的数据来提出问题,而有时,我们会先提出问题,再去想办法获取相应的数据。一般来说,可以有以下途径获取数据:

1)读取文件:
可以用代码来读取电脑中的文件,从而获取其中的数据。具体的方法我们会在“文件”章节中为大家做讲解。

2)网络抓取(爬虫):
互联网的普及造就了今日数据科学的蓬勃态势,我们之前学到的网页爬虫技能也是人们常用的获取数据手段。但是需要注意的是,要用合法手段抓取网站数据。

3)使用API:
许多网站提供应用程序接口(Application Programming Interface, API)允许你明确地请求结构化格式的数据。这样省去了我们不得不去抓取数据的麻烦。

import urllib.request
from urllib.request import urlopen
web_adr = "https://assets.baydn.com/baydn/public/codetime/1/scrape_py.html"
web_reponse = urllib.request.urlopen(web_adr)

print(web_reponse.read())

清洗数据

我们获取的数据往往是“不干净”的,我们需要对它进行清洗。
清洗数据一般包括三个方面:异常值的处理,空值的处理以及数据调整。

下方是我们从世界银行网站免费下载的公开数据,其中记录了每年的世界人口统计。我们想计算每年人口的变化趋势。到手的数据都是字符串,无法直接进行计算。

清洗数据:将字典的值(字符串)改为 float 数据。

data = "https://data.worldbank.org/indicator/sp.pop.totl"
world_population = {2017:"7530000000", 2016: "7444000000", 2015: "7358000000", 2014: "7271000000", 2013: "718500000"}

print("世界人口统计(2013~2017):")
for pop in world_population.values():
    #将字典的值(字符串)改为 float数据
    pop = float(pop)
    print(pop)
    print(type(pop))
    
print("数据来源:"+data)

# 世界人口统计(2013~2017):
# 718500000.0
# <class 'float'>
# 7271000000.0
# <class 'float'>
# 7358000000.0
# <class 'float'>
# 7444000000.0
# <class 'float'>
# 7530000000.0
# <class 'float'>
# 数据来源:https://data.worldbank.org/indicator/sp.pop.totl

分析数据

对数据清洗完毕后,我们可以从中挖掘有价值的信息。根据我们对问题的分类,也可以将对数据的分析角度划分为描述性分析和推断性分析。

比如下方程序,依据运行结果你愿意去哪家公司工作?

company_a = [3000,3500,3300,4000,3200,30000,4300,3000,4200,3000]
company_b = [6000,6500,6000,5500,5300,5300,6300,5800]

def ave_income(company):
  total = 0
  count = 0
  for num in company:
    total += num
    count += 1 
  return total/count
  
print("A公司的平均收入为{}元/月".format(ave_income(company_a)))
print("B公司的平均收入为{}元/月".format(ave_income(company_b)))

# A公司的平均收入为6150.0元/月
# B公司的平均收入为5837.5元/月

报告结论

最常见的结论展现方式是将数据可视化,比如Python中的pygal库实现数据可视化。

Line:折线图

import pygal
line_chart = pygal.Line()
line_chart.title = '浏览器使用比例 (%)'
line_chart.x_labels = map(str, range(2002, 2013))
line_chart.add('火狐', [None, None,    0, 16.6,   25,   31, 36.4, 45.5, 46.3, 42.8, 37.1])
line_chart.add('Chrome',  [None, None, None, None, None, None,    0,  3.9, 10.8, 23.8, 35.3])
line_chart.add('IE',      [85.8, 84.6, 84.7, 74.5,   66, 58.6, 54.7, 44.8, 36.2, 26.6, 20.1])
line_chart.add('其他',  [14.2, 15.4, 15.3,  8.9,    9, 10.4,  8.9,  5.8,  6.7,  6.8,  7.5])
line_chart.render()

image

Bar:柱状图

import pygal

"""
对891名泰坦尼克号乘客统计(人数):
女性幸存者:223
男性幸存者:109
女性遇难者:81
男性遇难者:468
"""

survive_female = 223
non_survive_female = 81
survive_male = 109
non_survive_male = 468

line_chart = pygal.Bar()
line_chart.title = '泰坦尼克号生存统计'
line_chart.x_labels = map(str, ["幸存者","遇难者"])
line_chart.add('女性',  [survive_female, non_survive_female])
line_chart.add('男性',  [survive_male, non_survive_male])
line_chart.render()

image

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容