MySQL8.0新特性:窗口函数
1. 使用窗口函数前后对比
假设我现在有这样一个数据表,它显示了某购物网站在每个城市每个区的销售额:
CREATE TABLE sales(
id INT PRIMARY KEY AUTO_INCREMENT,
city VARCHAR(15),
county VARCHAR(15),
sales_value DECIMAL
);
INSERT INTO sales(city,county,sales_value)
VALUES
('北京','海淀',10.00),
('北京','朝阳',20.00),
('上海','黄埔',30.00),
('上海','长宁',10.00);
查询:
mysql> SELECT * FROM sales;
+----+------+--------+-------------+
| id | city | county | sales_value |
+----+------+--------+-------------+
| 1 | 北京 | 海淀 | 10 |
| 2 | 北京 | 朝阳 | 20 |
| 3 | 上海 | 黄埔 | 30 |
| 4 | 上海 | 长宁 | 10 |
+----+------+--------+-------------+
4 rows in set (0.00 sec)
**需求:**现在计算这个网站在每个城市的销售总额、在全国的销售总额、每个区的销售额占所在城市销售额中的比率,以及占总销售额中的比率。如果用分组和聚合函数,就需要分好几步来计算。
第一步,计算总销售金额,并存入临时表 a:
CREATE TEMPORARY TABLE a -- 创建临时表
SELECT SUM(sales_value) AS sales_value -- 计算总计金额
FROM sales;
查看一下临时表 a :
mysql> SELECT * FROM a;
+-------------+
| sales_value |
+-------------+
| 70 |
+-------------+
1 row in set (0.00 sec)
第二步,计算每个城市的销售总额并存入临时表 b:
CREATE TEMPORARY TABLE b -- 创建临时表
SELECT city,SUM(sales_value) AS sales_value -- 计算城市销售合计
FROM sales
GROUP BY city;
查看临时表 b :
mysql> SELECT * FROM b;
+------+-------------+
| city | sales_value |
+------+-------------+
| 北京 | 30 |
| 上海 | 40 |
+------+-------------+
2 rows in set (0.00 sec)
第三步,计算各区的销售占所在城市的总计金额的比例,和占全部销售总计金额的比例。我们可以通过下面的连接查询获得需要的结果:
mysql> SELECT s.city AS 城市,s.county AS 区,s.sales_value AS 区销售额,
b.sales_value AS 市销售额,s.sales_value/b.sales_value AS 市比率,
a.sales_value AS 总销售额,s.sales_value/a.sales_value AS 总比率
FROM sales s
JOIN b ON (s.city=b.city) -- 连接市统计结果临时表
JOIN a -- 连接总计金额临时表
ORDER BY s.city,s.county;
+------+------+----------+----------+--------+----------+--------+
| 城市 | 区 | 区销售额 | 市销售额 | 市比率 | 总销售额 | 总比率 |
+------+------+----------+----------+--------+----------+--------+
| 上海 | 长宁 | 10 | 40 | 0.2500 | 70 | 0.1429 |
| 上海 | 黄埔 | 30 | 40 | 0.7500 | 70 | 0.4286 |
| 北京 | 朝阳 | 20 | 30 | 0.6667 | 70 | 0.2857 |
| 北京 | 海淀 | 10 | 30 | 0.3333 | 70 | 0.1429 |
+------+------+----------+----------+--------+----------+--------+
4 rows in set (0.00 sec)
结果显示:市销售金额、市销售占比、总销售金额、总销售占比都计算出来了。
同样的查询,如果用窗口函数,就简单多了。我们可以用下面的代码来实现:
mysql> SELECT city AS 城市,county AS 区,sales_value AS 区销售额,
SUM(sales_value) OVER(PARTITION BY city) AS 市销售额, -- 计算市销售额
sales_value/SUM(sales_value) OVER(PARTITION BY city) AS 市比率,
SUM(sales_value) OVER() AS 总销售额, -- 计算总销售额
sales_value/SUM(sales_value) OVER() AS 总比率
FROM sales
ORDER BY city,county;
+------+------+----------+----------+--------+----------+--------+
| 城市 | 区 | 区销售额 | 市销售额 | 市比率 | 总销售额 | 总比率 |
+------+------+----------+----------+--------+----------+--------+
| 上海 | 长宁 | 10 | 40 | 0.2500 | 70 | 0.1429 |
| 上海 | 黄埔 | 30 | 40 | 0.7500 | 70 | 0.4286 |
| 北京 | 朝阳 | 20 | 30 | 0.6667 | 70 | 0.2857 |
| 北京 | 海淀 | 10 | 30 | 0.3333 | 70 | 0.1429 |
+------+------+----------+-----------+--------+----------+--------+
4 rows in set (0.00 sec)
结果显示,我们得到了与上面那种查询同样的结果。
使用窗口函数,只用了一步就完成了查询。而且,由于没有用到临时表,执行的效率也更高了。很显然,在这种需要用到分组统计的结果对每一条记录进行计算的场景下,使用窗口函数更好。
2. 窗口函数的分类
MySQL从8.0版本开始支持窗口函数。窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数是将结果置于每一条数据记录中。窗口函数可以分为 静态窗口函数 和 动态窗口函数 。
静态窗口函数的窗口大小是固定的,不会因为记录的不同而不同;
动态窗口函数的窗口大小会随着记录的不同而变化。
MySQL官方网站窗口函数的网址为 **https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_row-number**。
窗口函数总体上可以分为序号函数、分布函数、前后函数、首尾函数和其他函数,如下表:
[图片上传失败...(image-3fcda6-1713621400415)]
3. 语法结构
窗口函数的语法结构是:
函数 OVER([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])
或者是:
函数 OVER 窗口名 … WINDOW 窗口名 AS ([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])
-
OVER 关键字指定函数窗口的范围。
如果省略后面括号中的内容,则窗口会包含满足WHERE条件的所有记录,窗口函数会基于所有满足WHERE条件的记录进行计算。
如果OVER关键字后面的括号不为空,则可以使用如下语法设置窗口。
窗口名:为窗口设置一个别名,用来标识窗口。
PARTITION BY子句:指定窗口函数按照哪些字段进行分组。分组后,窗口函数可以在每个分组中分别执行。
ORDER BY子句:指定窗口函数按照哪些字段进行排序。执行排序操作使窗口函数按照排序后的数据记录的顺序进行编号。
FRAME子句:为分区中的某个子集定义规则,可以用来作为滑动窗口使用。
4. 分类讲解
创建表:
CREATE TABLE goods(
id INT PRIMARY KEY AUTO_INCREMENT,
category_id INT,
category VARCHAR(15),
NAME VARCHAR(30),
price DECIMAL(10,2),
stock INT,
upper_time DATETIME
);
添加数据:
INSERT INTO goods(category_id,category,NAME,price,stock,upper_time)
VALUES
(1, '女装/女士精品', 'T恤', 39.90, 1000, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '连衣裙', 79.90, 2500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '卫衣', 89.90, 1500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '牛仔裤', 89.90, 3500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '百褶裙', 29.90, 500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '呢绒外套', 399.90, 1200, '2020-11-10 00:00:00'),
(2, '户外运动', '自行车', 399.90, 1000, '2020-11-10 00:00:00'),
(2, '户外运动', '山地自行车', 1399.90, 2500, '2020-11-10 00:00:00'),
(2, '户外运动', '登山杖', 59.90, 1500, '2020-11-10 00:00:00'),
(2, '户外运动', '骑行装备', 399.90, 3500, '2020-11-10 00:00:00'),
(2, '户外运动', '运动外套', 799.90, 500, '2020-11-10 00:00:00'),
(2, '户外运动', '滑板', 499.90, 1200, '2020-11-10 00:00:00');
下面针对goods表中的数据来验证每个窗口函数的功能。
1. 序号函数
1.ROW_NUMBER()函数
ROW_NUMBER()函数能够对数据中的序号进行顺序显示。
举例:查询 goods 数据表中每个商品分类下价格降序排列的各个商品信息。
mysql> SELECT ROW_NUMBER() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num, id, category_id, category, NAME, price, stock
FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 3 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 5 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 6 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
| 4 | 7 | 2 | 户外运动 | 自行车 | 399.90 | 1000 |
| 5 | 10 | 2 | 户外运动 | 骑行装备 | 399.90 | 3500 |
| 6 | 9 | 2 | 户外运动 | 登山杖 | 59.90 | 1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
举例:查询 goods 数据表中每个商品分类下价格最高的3种商品信息。
mysql> SELECT *
FROM (
SELECT ROW_NUMBER() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
id, category_id, category, NAME, price, stock
FROM goods) t
WHERE row_num <= 3;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 3 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
+---------+----+-------------+---------------+------------+----------+-------+
6 rows in set (0.00 sec)
在名称为“女装/女士精品”的商品类别中,有两款商品的价格为89.90元,分别是卫衣和牛仔裤。两款商品的序号都应该为2,而不是一个为2,另一个为3。此时,可以使用RANK()函数和DENSE_RANK()函数解决。
2.RANK()函数
使用RANK()函数能够对序号进行并列排序,并且会跳过重复的序号,比如序号为1、1、3。
举例:使用RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
mysql> SELECT RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 5 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 6 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
| 4 | 7 | 2 | 户外运动 | 自行车 | 399.90 | 1000 |
| 4 | 10 | 2 | 户外运动 | 骑行装备 | 399.90 | 3500 |
| 6 | 9 | 2 | 户外运动 | 登山杖 | 59.90 | 1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
举例:使用RANK()函数获取 goods 数据表中类别为“女装/女士精品”的价格最高的4款商品信息。
mysql> SELECT *
FROM(
SELECT RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods) t
WHERE category_id = 1 AND row_num <= 4;
+---------+----+-------------+---------------+----------+--------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+----------+--------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
+---------+----+-------------+---------------+----------+--------+-------+
4 rows in set (0.00 sec)
可以看到,使用RANK()函数得出的序号为1、2、2、4,相同价格的商品序号相同,后面的商品序号是不连续的,跳过了重复的序号。
3.DENSE_RANK()函数
DENSE_RANK()函数对序号进行并列排序,并且不会跳过重复的序号,比如序号为1、1、2。
举例:使用DENSE_RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
mysql> SELECT DENSE_RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
id, category_id, category, NAME, price, stock
FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 3 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 4 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 5 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
| 4 | 7 | 2 | 户外运动 | 自行车 | 399.90 | 1000 |
| 4 | 10 | 2 | 户外运动 | 骑行装备 | 399.90 | 3500 |
| 5 | 9 | 2 | 户外运动 | 登山杖 | 59.90 | 1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
举例:使用DENSE_RANK()函数获取 goods 数据表中类别为“女装/女士精品”的价格最高的4款商品信息。
mysql> SELECT *
FROM(
SELECT DENSE_RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
id, category_id, category, NAME, price, stock
FROM goods) t
WHERE category_id = 1 AND row_num <= 3;
+---------+----+-------------+---------------+----------+--------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+----------+--------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 3 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
+---------+----+-------------+---------------+----------+--------+-------+
4 rows in set (0.00 sec)
可以看到,使用DENSE_RANK()函数得出的行号为1、2、2、3,相同价格的商品序号相同,后面的商品序号是连续的,并且没有跳过重复的序号。
2. 分布函数
1.PERCENT_RANK()函数
PERCENT_RANK()函数是等级值百分比函数。按照如下方式进行计算。
(rank - 1) / (rows - 1)
其中,rank的值为使用RANK()函数产生的序号,rows的值为当前窗口的总记录数。
举例:计算 goods 数据表中名称为“女装/女士精品”的类别下的商品的PERCENT_RANK值。
#写法一:
SELECT RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS r,
PERCENT_RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS pr,
id, category_id, category, NAME, price, stock
FROM goods
WHERE category_id = 1;
#写法二:
mysql> SELECT RANK() OVER w AS r,
PERCENT_RANK() OVER w AS pr,
id, category_id, category, NAME, price, stock
FROM goods
WHERE category_id = 1 WINDOW w AS (PARTITION BY category_id ORDER BY price
DESC);
+---+-----+----+-------------+---------------+----------+--------+-------+
| r | pr | id | category_id | category | NAME | price | stock |
+---+-----+----+-------------+---------------+----------+--------+-------+
| 1 | 0 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 0.2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 0.2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 0.6 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 5 | 0.8 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 6 | 1 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
+---+-----+----+-------------+---------------+----------+--------+-------+
6 rows in set (0.00 sec)
2. CUME_DIST()函数
CUME_DIST()函数主要用于查询小于或等于某个值的比例。
举例:查询goods数据表中小于或等于当前价格的比例。
mysql> SELECT CUME_DIST() OVER(PARTITION BY category_id ORDER BY price ASC) AS cd,
id, category, NAME, price
FROM goods;
+---------------------+----+---------------+------------+---------+
| cd | id | category | NAME | price |
+---------------------+----+---------------+------------+---------+
| 0.16666666666666666 | 5 | 女装/女士精品 | 百褶裙 | 29.90 |
| 0.3333333333333333 | 1 | 女装/女士精品 | T恤 | 39.90 |
| 0.5 | 2 | 女装/女士精品 | 连衣裙 | 79.90 |
| 0.8333333333333334 | 3 | 女装/女士精品 | 卫衣 | 89.90 |
| 0.8333333333333334 | 4 | 女装/女士精品 | 牛仔裤 | 89.90 |
| 1 | 6 | 女装/女士精品 | 呢绒外套 | 399.90 |
| 0.16666666666666666 | 9 | 户外运动 | 登山杖 | 59.90 |
| 0.5 | 7 | 户外运动 | 自行车 | 399.90 |
| 0.5 | 10 | 户外运动 | 骑行装备 | 399.90 |
| 0.6666666666666666 | 12 | 户外运动 | 滑板 | 499.90 |
| 0.8333333333333334 | 11 | 户外运动 | 运动外套 | 799.90 |
| 1 | 8 | 户外运动 | 山地自行车 | 1399.90 |
+---------------------+----+---------------+------------+---------+
12 rows in set (0.00 sec)
3. 前后函数
1.LAG(expr,n)函数
LAG(expr,n)函数返回当前行的前n行的expr的值。
举例:查询goods数据表中前一个商品价格与当前商品价格的差值。
mysql> SELECT id, category, NAME, price, pre_price, price - pre_price AS diff_price
FROM (
SELECT id, category, NAME, price,LAG(price,1) OVER w AS pre_price
FROM goods
WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
+----+---------------+------------+---------+-----------+------------+
| id | category | NAME | price | pre_price | diff_price |
+----+---------------+------------+---------+-----------+------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | NULL | NULL |
| 1 | 女装/女士精品 | T恤 | 39.90 | 29.90 | 10.00 |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 39.90 | 40.00 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 79.90 | 10.00 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 89.90 | 0.00 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 89.90 | 310.00 |
| 9 | 户外运动 | 登山杖 | 59.90 | NULL | NULL |
| 7 | 户外运动 | 自行车 | 399.90 | 59.90 | 340.00 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 399.90 | 0.00 |
| 12 | 户外运动 | 滑板 | 499.90 | 399.90 | 100.00 |
| 11 | 户外运动 | 运动外套 | 799.90 | 499.90 | 300.00 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 799.90 | 600.00 |
+----+---------------+------------+---------+-----------+------------+
12 rows in set (0.00 sec)
2. LEAD(expr,n)函数
LEAD(expr,n)函数返回当前行的后n行的expr的值。
举例:查询goods数据表中后一个商品价格与当前商品价格的差值。
mysql> SELECT id, category, NAME, behind_price, price,behind_price - price AS
diff_price
FROM(
SELECT id, category, NAME, price,LEAD(price, 1) OVER w AS behind_price
FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
+----+---------------+------------+--------------+---------+------------+
| id | category | NAME | behind_price | price | diff_price |
+----+---------------+------------+--------------+---------+------------+
| 5 | 女装/女士精品 | 百褶裙 | 39.90 | 29.90 | 10.00 |
| 1 | 女装/女士精品 | T恤 | 79.90 | 39.90 | 40.00 |
| 2 | 女装/女士精品 | 连衣裙 | 89.90 | 79.90 | 10.00 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 89.90 | 0.00 |
| 4 | 女装/女士精品 | 牛仔裤 | 399.90 | 89.90 | 310.00 |
| 6 | 女装/女士精品 | 呢绒外套 | NULL | 399.90 | NULL |
| 9 | 户外运动 | 登山杖 | 399.90 | 59.90 | 340.00 |
| 7 | 户外运动 | 自行车 | 399.90 | 399.90 | 0.00 |
| 10 | 户外运动 | 骑行装备 | 499.90 | 399.90 | 100.00 |
| 12 | 户外运动 | 滑板 | 799.90 | 499.90 | 300.00 |
| 11 | 户外运动 | 运动外套 | 1399.90 | 799.90 | 600.00 |
| 8 | 户外运动 | 山地自行车 | NULL | 1399.90 | NULL |
+----+---------------+------------+--------------+---------+------------+
12 rows in set (0.00 sec)
4. 首尾函数
1. FIRST_VALUE(expr)函数
FIRST_VALUE(expr)函数返回第一个expr的值。
举例:按照价格排序,查询第1个商品的价格信息。
mysql> SELECT id, category, NAME, price, stock,FIRST_VALUE(price) OVER w AS
first_price
FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+-------+-------------+
| id | category | NAME | price | stock | first_price |
+----+---------------+------------+---------+-------+-------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | 500 | 29.90 |
| 1 | 女装/女士精品 | T恤 | 39.90 | 1000 | 29.90 |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 | 29.90 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 1500 | 29.90 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 | 29.90 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 | 29.90 |
| 9 | 户外运动 | 登山杖 | 59.90 | 1500 | 59.90 |
| 7 | 户外运动 | 自行车 | 399.90 | 1000 | 59.90 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 3500 | 59.90 |
| 12 | 户外运动 | 滑板 | 499.90 | 1200 | 59.90 |
| 11 | 户外运动 | 运动外套 | 799.90 | 500 | 59.90 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 2500 | 59.90 |
+----+---------------+------------+---------+-------+-------------+
12 rows in set (0.00 sec)
2.LAST_VALUE(expr)函数
LAST_VALUE(expr)函数返回最后一个expr的值。
举例:按照价格排序,查询最后一个商品的价格信息。
mysql> SELECT id, category, NAME, price, stock,LAST_VALUE(price) OVER w AS last_price
-> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+-------+------------+
| id | category | NAME | price | stock | last_price |
+----+---------------+------------+---------+-------+------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | 500 | 29.90 |
| 1 | 女装/女士精品 | T恤 | 39.90 | 1000 | 39.90 |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 | 79.90 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 1500 | 89.90 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 | 89.90 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 | 399.90 |
| 9 | 户外运动 | 登山杖 | 59.90 | 1500 | 59.90 |
| 7 | 户外运动 | 自行车 | 399.90 | 1000 | 399.90 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 3500 | 399.90 |
| 12 | 户外运动 | 滑板 | 499.90 | 1200 | 499.90 |
| 11 | 户外运动 | 运动外套 | 799.90 | 500 | 799.90 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 2500 | 1399.90 |
+----+---------------+------------+---------+-------+------------+
12 rows in set (0.00 sec)
5. 其他函数
1.NTH_VALUE(expr,n)函数
NTH_VALUE(expr,n)函数返回第n个expr的值。
举例:查询goods数据表中排名第2和第3的价格信息。
mysql> SELECT id, category, NAME, price,NTH_VALUE(price,2) OVER w AS second_price,
NTH_VALUE(price,3) OVER w AS third_price
FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+--------------+-------------+
| id | category | NAME | price | second_price | third_price |
+----+---------------+------------+---------+--------------+-------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | NULL | NULL |
| 1 | 女装/女士精品 | T恤 | 39.90 | 39.90 | NULL |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 39.90 | 79.90 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 39.90 | 79.90 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 39.90 | 79.90 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 39.90 | 79.90 |
| 9 | 户外运动 | 登山杖 | 59.90 | NULL | NULL |
| 7 | 户外运动 | 自行车 | 399.90 | 399.90 | 399.90 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 399.90 | 399.90 |
| 12 | 户外运动 | 滑板 | 499.90 | 399.90 | 399.90 |
| 11 | 户外运动 | 运动外套 | 799.90 | 399.90 | 399.90 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 399.90 | 399.90 |
+----+---------------+------------+---------+--------------+-------------+
12 rows in set (0.00 sec)
2.NTILE(n)函数
NTILE(n)函数将分区中的有序数据分为n个桶,记录桶编号。
举例:将goods表中的商品按照价格分为3组。
mysql> SELECT NTILE(3) OVER w AS nt,id, category, NAME, price
FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+----+---------------+------------+---------+
| nt | id | category | NAME | price |
+----+----+---------------+------------+---------+
| 1 | 5 | 女装/女士精品 | 百褶裙 | 29.90 |
| 1 | 1 | 女装/女士精品 | T恤 | 39.90 |
| 2 | 2 | 女装/女士精品 | 连衣裙 | 79.90 |
| 2 | 3 | 女装/女士精品 | 卫衣 | 89.90 |
| 3 | 4 | 女装/女士精品 | 牛仔裤 | 89.90 |
| 3 | 6 | 女装/女士精品 | 呢绒外套 | 399.90 |
| 1 | 9 | 户外运动 | 登山杖 | 59.90 |
| 1 | 7 | 户外运动 | 自行车 | 399.90 |
| 2 | 10 | 户外运动 | 骑行装备 | 399.90 |
| 2 | 12 | 户外运动 | 滑板 | 499.90 |
| 3 | 11 | 户外运动 | 运动外套 | 799.90 |
| 3 | 8 | 户外运动 | 山地自行车 | 1399.90 |
+----+----+---------------+------------+---------+
12 rows in set (0.00 sec)
2.5 小 结
窗口函数的特点是可以分组,而且可以在分组内排序。另外,窗口函数不会因为分组而减少原表中的行数,这对我们在原表数据的基础上进行统计和排序非常有用。