贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,希望得到结果是最好或最优的算法。
贪心算法是一种能够得到某种度量意义下的最优解的分级处理方法,通过一系列的选择得到一个问题的解,而它所做的每一次选择都是当前状态下某种意义的最好选择。即希望通过问题的局部最优解求出整个问题的最优解。
这种策略是一种很简洁的方法,对许多问题它能产生整体最优解,但不能保证总是有效,因为它不是对所有问题都能得到整体最优解。
利用贪心策略解题,需要解决两个问题:
(1)该题是否适合于用贪心策略求解;
(2)如何选择贪心标准,以得到问题的最优/较优解。
贪心选择性质
贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
(1)在动态规划算法中,每步所做的选择往往依赖于相关子问题的解,因而只有在解出相关子问题后,才能做出选择。
(2)在贪心算法中,仅在当前状态下做出最好选择,即局部最优选择,然后再去解出这个选择后产生的相应的子问题。
最优子结构性质
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
- 运用贪心策略在每一次转化时都取得了最优解。问题的最优子结构性质是该问题可用贪心算法或动态规划算法求解的关键特征。
贪心算法的每一次操作都对结果产生直接影响,而动态规划则不是。
- 贪心算法对每个子问题的解决方案都做出选择,不能回退;动态规划则会根据以前的选择结果对当前进行选择,有回退功能。
- 动态规划主要运用于二维或三维问题,而贪心一般是一维问题。
贪心算法的求解过程
使用贪心算法求解问题应该考虑如下几个方面:
(1)候选集合A:为了构造问题的解决方案,有一个候选集合A作为问题的可能解,即问题的最终解均取自于候选集合A。
(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成满足问题的完整解。
(3)解决函数solution:检查解集合S是否构成问题的完整解。
(4)选择函数select:即贪心策略,这是贪心法的关键,它指出哪个候选对象最有希望构成问题的解,选择函数通常和目标函数有关。
(5)可行函数feasible:检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。
贪心算法的一般流程
//A是问题的输入集合即候选集合
Greedy(A)
{
S={ }; //初始解集合为空集
while (not solution(S)) //集合S没有构成问题的一个解
{
x = select(A); //在候选集合A中做贪心选择
if feasible(S, x) //判断集合S中加入x后的解是否可行
S = S+{x};
A = A-{x};
}
return S;
}
(1)候选集合A:问题的最终解均取自于候选集合A。
(2)解集合S:解集合S不断扩展,直到构成满足问题的完整解。
(3)解决函数solution:检查解集合S是否构成问题的完整解。
(4)选择函数select:贪心策略,这是贪心算法的关键。
(5)可行函数feasible:解集合扩展后是否满足约束条件。