判断一个数是否是素数

问题

如题

思路

首先太暴力的就不谈,会折寿,有一个强伪证的算法(strong liar)Miller Rabin Test,思路是这样(以下p代表某一个大于2的素数),找到判断素数的必要条件,将多个条件组合起来就能得到近似充分的判断素数条件

两个引理说一下,首先是二次探测定理:如果x2≡1(mod p),那么x≡±1(mod p),或者说不存在模p等于1下的非平凡平方根(证明:p只有1和p两个因子的情况下,(x+1)(x-1)≡0(mod p)只可能有x-1=0或x+1=p)

然后是费马小定理,a和p互质(gcd(a,p)=1)时,ap-1≡1(mod p)

好了开始,对于要判断的数P,任取2-p内的数a,这里我们方便起见取a=2
根据上述条件,p-1一定是偶数,可以分解成2r*d的形式,所以对于a2^r*d ≡1(mod p),也就是(a2^(r-1)*d )2≡1(mod p),设x(n) = (a(2^n*d)) mod p,那么目前的情况是,我们仅有平凡平方根x(r-1)≡±1(mod p)

这里如果x(r-1)≡1(mod p),问题就变得可递归了,因为接下来的方程是a2^(r-1)*d≡1(mod p),然后我们可以继续往下解xn-1,xn-2...
如果是x(r-1)≡-1(mod p),那么问题就更简单了,因为接下来的解不确定,不用往下推了

所以从上往下推我们可以看到,对于函数x的序列,x(r)=1是一定的,而且如果x(t)=-1,那么x(t+1)到x(r)一定都是1,也就是说,对于序列中的数只要判断两个条件即可:
1.1之前的数一定是1或-1
2.最后一个数一定是1

解决

    public boolean sPrime_RobinMiller(long p) {
        long[] ar = new long[]{2, 3, 5, 7, 11};//if n < 2,152,302,898,747, it is enough to test a = 2, 3, 5, 7, and 11.

        if (p < 4) return p > 1;
        if (p == 5 || p == 7 || p == 11) return true;//a<p-1

        for (long a : ar) {
            long p1 = p - 1, u = p1 & -p1, d = p1 / u, cur = quickPow(a, d, p), prev = cur;
            while (u > 0) {
                cur = prev * prev % p;
                if (cur == 1 && prev != 1 && prev != p1)
                    return false;//序列中,1之前的数一定是1或者-1
                prev = cur;
                u >>= 1;
            }

            if (cur != 1)
                return false;//序列的最后一个数一定是1
        }

        return true;//all passed
    }

    private long quickPow(long a, long b, long c) {
        long res = 1;
        for (; b > 0; b >>= 1, a = a*a%c)
            if ((b & 1) == 1) {
                res = res * a % c;
            }
        return res;
    }

Tips

  • 取a=2,3,5,7,11,对于int范围内所有数(小于2147483648的所有数)都可以判断出结果,注意这时需要对3,5,7,11单独判断一遍,因为前提条件是gcd(a,p)=1
  • 并不是所有数据类型取long就能判断出长整型范围内的数据了,因为快速幂中需要计算2d mod p,其中a*a是有可能溢出的

Ref

https://oi-wiki.org/math/prime/
https://zh.wikipedia.org/wiki/%E7%B1%B3%E5%8B%92-%E6%8B%89%E5%AE%BE%E6%A3%80%E9%AA%8C

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342