[动手学深度学习-PyTorch版]-8.4计算性能-多GPU计算

8.4 多GPU计算

注:相对于本章的前面几节,我们实际中更可能遇到本节所讨论的情况:多GPU计算。原书将MXNet的多GPU计算分成了8.4和8.5两节,但我们将关于PyTorch的多GPU计算统一放在本节讨论。 需要注意的是,这里我们谈论的是单主机多GPU计算而不是分布式计算。如果对分布式计算感兴趣可以参考PyTorch官方文档

本节中我们将展示如何使用多块GPU计算,例如,使用多块GPU训练同一个模型。正如所期望的那样,运行本节中的程序需要至少2块GPU。事实上,一台机器上安装多块GPU很常见,这是因为主板上通常会有多个PCIe插槽。如果正确安装了NVIDIA驱动,我们可以通过在命令行输入nvidia-smi命令来查看当前计算机上的全部GPU(或者在jupyter notebook中运行!nvidia-smi)。

nvidia-smi

输出:

Wed May 15 23:12:38 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.48                 Driver Version: 390.48                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    Off  | 00000000:02:00.0 Off |                  N/A |
| 46%   76C    P2    87W / 250W |  10995MiB / 12196MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN X (Pascal)    Off  | 00000000:04:00.0 Off |                  N/A |
| 53%   84C    P2   143W / 250W |  11671MiB / 12196MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   2  TITAN X (Pascal)    Off  | 00000000:83:00.0 Off |                  N/A |
| 62%   87C    P2   190W / 250W |  12096MiB / 12196MiB |    100%      Default |
+-------------------------------+----------------------+----------------------+
|   3  TITAN X (Pascal)    Off  | 00000000:84:00.0 Off |                  N/A |
| 51%   83C    P2   255W / 250W |   8144MiB / 12196MiB |     58%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0     44683      C   python                                      3289MiB |
|    0    155760      C   python                                      4345MiB |
|    0    158310      C   python                                      2297MiB |
|    0    172338      C   /home/yzs/anaconda3/bin/python              1031MiB |
|    1    139985      C   python                                     11653MiB |
|    2     38630      C   python                                      5547MiB |
|    2     43127      C   python                                      5791MiB |
|    2    156710      C   python3                                      725MiB |
|    3     14444      C   python3                                     1891MiB |
|    3     43407      C   python                                      5841MiB |
|    3     88478      C   /home/tangss/.conda/envs/py36/bin/python     379MiB |
+-----------------------------------------------------------------------------+

从上面的输出可以看到一共有四块TITAN X GPU,每一块总共有约12个G的显存,此时每块的显存都占得差不多了......此外还可以看到GPU利用率、运行的所有程序等信息。

Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文用一个简单的例子讲解下使用Pytorch多GPU训练的方式以及一些注意的地方。

8.4.1 多GPU计算

先定义一个模型:

import torch
net = torch.nn.Linear(10, 1).cuda()
net

输出:

Linear(in_features=10, out_features=1, bias=True)

要想使用PyTorch进行多GPU计算,最简单的方法是直接用torch.nn.DataParallel将模型wrap一下即可:

net = torch.nn.DataParallel(net)
net

输出:

DataParallel(
  (module): Linear(in_features=10, out_features=1, bias=True)
)

这时,默认所有存在的GPU都会被使用。

如果我们机子中有很多GPU(例如上面显示我们有4张显卡,但是只有第0、3块还剩下一点点显存),但我们只想使用0、3号显卡,那么我们可以用参数device_ids指定即可:torch.nn.DataParallel(net, device_ids=[0, 3])

8.4.2 多GPU模型的保存与加载

我们现在来尝试一下按照4.5节(读取和存储)推荐的方式进行一下模型的保存与加载。 保存模型:

torch.save(net.state_dict(), "./8.4_model.pt")

加载模型前我们一般要先进行一下模型定义,此时的new_net并没有使用多GPU:

new_net = torch.nn.Linear(10, 1)
new_net.load_state_dict(torch.load("./8.4_model.pt"))

然后我们发现报错了:

RuntimeError: Error(s) in loading state_dict for Linear:
    Missing key(s) in state_dict: "weight", "bias". 
    Unexpected key(s) in state_dict: "module.weight", "module.bias". 

事实上DataParallel也是一个nn.Module,只是这个类其中有一个module就是传入的实际模型。因此当我们调用DataParallel后,模型结构变了(在外面加了一层而已,从8.4.1节两个输出可以对比看出来)。所以直接加载肯定会报错的,因为模型结构对不上。

所以正确的方法是保存的时候只保存net.module:

torch.save(net.module.state_dict(), "./8.4_model.pt")
new_net.load_state_dict(torch.load("./8.4_model.pt")) # 加载成功

或者先将new_netDataParallel包括以下再用上面报错的方法进行模型加载:

torch.save(net.state_dict(), "./8.4_model.pt")
new_net = torch.nn.Linear(10, 1)
new_net = torch.nn.DataParallel(new_net)
new_net.load_state_dict(torch.load("./8.4_model.pt")) # 加载成功

注意这两种方法的区别,推荐用第一种方法,因为可以按照普通的加载方法进行正确加载。


注:本节与原书基本不同,原书传送门

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341

推荐阅读更多精彩内容