读论文系列:Object Detection CVPR2016 YOLO

CVPR2016: You Only Look Once:Unified, Real-Time Object Detection

转载请注明作者:梦里茶

YOLO detection system

YOLO,You Only Look Once,摒弃了RCNN系列方法中的region proposal步骤,将detection问题转为一个回归问题

网络结构

  • 输入图片:resize到448x448

  • 整张图片输入卷积神经网络(24层卷积+2层全连接,下面这张示意图是Fast YOLO的)

CNN
  • 将图片划分为SxS个格子,S=7
  • 输出一个SxS大小的class probability map,为图片上每个格子所属的分类
Model
  • 输出为每个格子输出B个bounding box,每个bounding box由x,y,w,h表示,为每个bounding box输出一个confidence,即属于前景的置信度

于是输出可以表示为一个SxSx(B*(4+1)+C)的tensor,训练只需要根据数据集准备好这样的tensor进行regression就行

  • 对所有bounding box按照confidence做非极大抑制,得到检测结果

训练

Loss

YOLO Loss Function
  • 前两行为定位loss,λcoord为定位loss的权重,论文中取5
  • 第三行为一个bounding box属于前景时的置信度回归loss,
    • 当格子中有对象出现时,真实Ci为1,
    • 1ijobj是一个条件表达式,当bounding box“负责(is responsible for)”图中一个真实对象时为1,否则为0,
    • 所谓“负责”,指的是在当前这个格子的所有bounding box中,这个bounding box与真实的bounding box重叠率最大
  • 第四行为一个bounding box属于背景时的置信度回归loss,
    • 为了避免负样本过多导致模型跑偏, λnoobj=0.5,
    • 1ijnoobj是一个条件表达式,为1ijobj取反
    • 于是我们可以发现一个格子的两个bounding box的分工:一个贡献前景loss,一个贡献背景loss ,不论是前景背景box,我们都希望它们的confidence接近真实confidence,实际上,如果 λnoobj=1, 第四五行可以合并为一项求和,但由于背景box太多,所以才单独拆开加了权重约束
  • 第五行为分类loss,1iobj是一个条件表达式,当有对象出现在这个格子中,取1,否则取0

YOLO里最核心的东西就讲完了,其实可以把YOLO看作固定region proposal的Faster RCNN,于是可以省掉Faster RCNN里region proposal部分,分类和bounding box regression跟Faster RCNN是差不多的

细节

Leaky Relu

网络中只有最后的全连接层用了线性的激活函数,其他层用了leaky Relu:f(x)=max(x, 0.1x)

对比Relu和leaky Relu

Relu
Leaky Relu

在x小于0的时候,用了0.1x,避免使用relu的时候有些单元永远得不到激活(Dead ReLU Problem)

Fast YOLO

卷积层更少,只有9层卷积+2层全连接,每层filters也更少,于是速度更快

实验效果

  • 对比当前最好方法:
SOA

Fast YOLO速度最快,准确率不太高,但还是比传统方法好,YOLO则比较中庸,速度不慢,准确率也不太高,但也还行。

  • 再看看具体是在哪些类型的图片上出错的:
Error Analysis

主要是定位不准(毕竟没有精细的region proposal),但是在背景上出错较少(不容易把背景当成对象)

缺点

  • 固定的格子是一种很强的空间限制,7x7的格子决定了整张图片最多预测98个对象,对于对象数量很多的图片(比如鸟群)无能为力
  • 难以泛化到其他形状或角度的物体上
  • 损失函数没有考虑不同尺寸物体的error权重,大box权重和小box权重一样

Summary

Anyway,YOLO结构还是挺优雅的,比Faster RCNN黑科技少多了,更重要的是,它是当时最快的深度学习检测模型,也是很值得肯定的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,340评论 5 467
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,762评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,329评论 0 329
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,678评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,583评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,995评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,493评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,145评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,293评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,250评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,267评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,973评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,556评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,648评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,873评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,257评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,809评论 2 339