Overfitting and Regularization

Overfitting and Regularization

  • What should we do if our model is too complicated?
    • Fundamental causes of overfitting:
      complicated model (通常情况下是variance过大); limited learning data/labels
    • increase training data size
    • avoid over-training your dataset
      • filter out features:
        feture reduction
        principle component analysis (PCA)
      • regularization:
        ridge regression
        least absolute shrinkage and selection operator (LASSO) Logistic Regression-L2, -L1
Model Error
  • Error of regression models
    Error = bias^2 + variance + irreducible\, error
  • Bias measures how far off in general the model's predictions are from the correct value.
    Variance is how much the predictions for a given point vary between different realizations of the model.


    tradeoff.png

    image.png

    image.png
Ridge Regression(^2 regression); LASSO(^1 regression)
  • choose model -> calculate loss function -> numerical optimization
  • ridge regression improves the loss function definition of linear regression by introducing variance into the formula
  • L2 penalty \sum_{i=1}^n(y_i - \beta_0 - \sum_{j =1}^p\beta_jx_{ij})^2 + \lambda \sum_{j=1}^p\beta_j^2
    constraint conditioned optimization problem. Lagrange multiplier
  • Hyperparameter Optimization
    \lambda \uparrow \,: variance\,\downarrow\, bias\,\uparrow
    its value is usually obtained by test: cross validation
L1 L2 (^1 ^2 classification)
  • L1 penalty in loss function Linear: \sum_{i=1}^n(y_i - \beta_0 - \sum_{j =1}^p\beta_jx_{ij})^2 + \lambda \sum_{j=1}^p|\beta_j| Logistic: min log(P) = \sum^n_{i=1}[ - y_ilog(h_{\beta}(x_i)) - (1 - y_i)log(1 - h_\beta(x_i))] + \lambda||\beta||_1
  • L1 penalty in loss function Linear: \sum_{i=1}^n(y_i - \beta_0 - \sum_{j =1}^p\beta_jx_{ij})^2 + \lambda \sum_{j=1}^p\beta_j^2 Logistic: min log(P) = \sum^n_{i=1}[ - y_ilog(h_{\beta}(x_i)) - (1 - y_i)log(1 - h_\beta(x_i))] + \lambda||\beta||_2
  • Norm1 = (|x1| + |x2|)
    Norm2 = sqrt(x1^2 +x2^2)
    Norm3 = cub(x1^3 + x2^3)

Cross Validation

  • what is it:
    assess how your model result will generalize to another independent dataset
  • K-fold Cross Validation
  • classify the dataset into three parts -training dataset, validation set and testing set; then train a model from the training set, try (3) different lambdas to get three new models, calculate (3) errors in the validation set and determine which lambda has the least error. Then use this lambda and the whole dataset (traing, validation) to get a final model.Sometimes this method is biased because the traing set and validation set may have different characteristic distributions, so we k-fold our set and do cross validation on each choice of classification of set and calculate the average error.
  • model selection with cross validation:
    use cross validation method to do hyperparameter tuning
    cross validation can only validate your model selection

Confusion Matrix

p n
y true positive false positive
n false negative true negative
  • in "true positive":
    "true" means: you made a correct prediction
    "positive" means: what your prediction is
  • Different metrics(量度) for model evaluation:
    precision = tp / (tp + fp) spam
    recall = tp / (tp + fn) recall
    accuracy = (tp + tn) / all
    cyber security: recall is necessary, improve precision as much as possible
    if data is really imbalanced (a huge difference in n and p), look at precision and recall but not accuracy because negative can be too many and accuracy should be high by nature)

Result Evaluation Metric - ROC curve

  • receiver operating characteristic curve


    image.png
  • false positive rate = number of flase positive / number of real negative
    true positive rate = number of true positive / number of real positive
  • 同样的模型 同样的data 取不同的threshold得到的rate
    classifiter越凸、凹越好(积分与random chance积分的差越大越好)面积[0.5, 1] 面积越大分类越好
  • special points in ROC space
    best case (0, 1)
    worst case:(1, 0)
  • Area under the Curve of ROC (AUC)
    AUC value: [0, 1]
    The larger the value is, the better classification performance your classifier has.
    ROC AUC is the probability a randomly-chosen positive example is ranked more highly than a randomly-chosen negative example (campared to the ground truth).
    • 00110
      abcde
    • cabde
      10010 AUC= 0.8
    • dcabe ACU = 1
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,636评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,890评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,680评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,766评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,665评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,045评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,515评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,182评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,334评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,274评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,319评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,002评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,599评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,675评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,917评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,309评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,885评论 2 341

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,267评论 0 10
  • 旅行,让我们可以真切的感受世界,电影,告诉我们世界有无限可能。 电影或是综艺中的拍摄地,总能用故事将我们带入一个赋...
    海子房车阅读 299评论 0 0
  • 世界的尽头 都会有一座灯塔 指引归航
    闭上眼的狗狗阅读 243评论 0 0
  • 2016年5月15日(周日)傍晚,风声鹤唳,雷鸣电闪,大雨倾盆。顷刻间,水积路面。至校园一二百米处,早已是车辆拥堵...
    清晨新竹阅读 220评论 0 0