创业公司初期一般是不会重视数据的价值的,因为重点是在产品上,如何做好产品来吸引用户。并且用户数量少、产品结构单一,数据很难发挥出价值。
- 到第二轮、第三轮融资时,一般DAU达到百万级别。此时投资人会需要看你的数据,看公司的运营发展变化情况,此时,就会出现报表这种东西——就是把核心的指标,DAU、MAU等一系列列成一张巨大的时间序列表,观测每天的发展趋势。但此时,对于数据的利用也就仅仅局限在核心指标的汇总计算上。此类公司的数据分析师的工作可能就是生成报表,研究指标周期变化趋势等。
- 公司稳定发展后,可以通过埋点等方式获取海量、多维度的数据后,便可以做更多的事情。比如根据用户的多维度属性,研究用户画像、将用户聚类等;根据用户浏览网页或者App的路径数据,研究用户行为偏好等;根据用户的评论文本数据来甄别是否是恶意用户等。此时,可以利用海量、多维度的数据做很多的事情,而不单单是简单的数据指标、数据报表。此类公司不仅仅有数据分析师,还会有数据挖掘师,算法工程师等。数据分析师的工作会研究用户行为、用户偏好等。
- 当公司发展到产品丰富、商业模式多样化的成熟状态后,数据是海量的,业务模式是多样的,如何最大程度的利用数据产生价值是此类公司所追求的。就像马云提出的观点:阿里巴巴不是零售公司,是数据公司。此时会出现诸多与数据相关的岗位,如基础层的数据研发工程师,数据架构师等,应用层的数据分析师、算法工程师、数据挖掘师等,上层的数据产品经理等。从数据获取,到数据的应用,再到数据产品的研发,目的就是最大限度的实现数据的价值。此类的数据分析师,由于业务的复杂性,往往也会分成几类。有针对各个业务线的分析师,有针对整个公司、整个集团横向研究商业发展的分析师(战略分析),也有针对所在市场做市场研究的分析师(市场研究)。