Python——Pandas数据结构介绍

1.Pandas库介绍:

Pandas是Python第三方库,提供高性能易用数据类型和分析工具,其所包含的数据 结构和数据处理工具的设计使得在Python中进行数据清洗和分析非常方便。
Pandas是基于Numpy实现,常与Numpy、Scipy和Matplotlib一同使用。
Pandas的引用直接使用以下语句即可:

import pandas as pd # 尽管别名可以省略或者修改,建议使用上述约定的别名

2.Pandas库的理解:

Pandas库主要有两种数据类型:Series(相当于一个一维数据类型)、DataFrame(相当于一个二维到多维数据类型) ,并基于上述两个数据类型提供了各类操作: 基本操作、运算操作、特征类操作、关联类操作。

Numpy Pandas
基础数据类型 扩展数据类型
关注数据的结构表达 关注数据的应用表达
维度:数据间关系 数据与索引间关系

3.Pandas库的Series类型:

3.1 Series类型介绍:

Series类型是由一组数据及与之相关的数据索引组成,即一维的带“标签”的数组。Series类型包括index和value两部分。

  • 自动索引
image
  • 自定义索引
image
3.2 Series类型的创建:
  • Python列表:index与列表元素个数一致

  • 标量值:index表达Series类型的尺寸

image
  • Python字典:键值对中的“键”是索引,index从字典中进行选择操作
image

如要构造与字典不同的数据类型时刻采用index参数:


image
  • ndarray:索引和数据都可以用过ndarray类型创建
image
  • 其他函数:range()函数等

4.Pandas库的DataFrame类型:

4.1 DataFrame类型介绍:

DataFrame类型由共用相同索引的一组列组成。
DataFrame是一个表格型的数据类型,每列值类型可以不同;
DataFrame既有行索引(index),也有列索引(column);
DataFrame常用于表达二维数据,但可以表达多维数据。

image
4.2 DataFrame类型的创建:
  • 二维ndarray对象
image
  • 由一维ndarray构成的字典
image
  • 由列表构成的字典
image
  • 由字典、元组或Series构成的字典

  • Series类型

  • 其他的DataFrame类型

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容