monocle2 拟时间分支点分析结果解读

How to map cell fate to branches?

拟时间分析结果有很多重要的结果,但是这些结果如何解读?比如下图的分支点分析结果:


分支点热图结果

从图中可以看到,行代表基因,这个好说,热图的列主要分为三方面:Pre−branch、Cell fate 1、Cell fate 2,这三个列代表什么含义?


Pre−branch

为了解读结果,我们看一下拟时间分析分的state结果图,然后我们对应的Pre−branch包含哪些细胞?


拟时间分析state结果

这里,我们想比较state7和state1的差异,也就是想分析branch point 3的分支点(identify genes expressed in a branch-dependent ),那这里Pre−branch到底包含哪些细胞?

In fact, BEAM tries to traverse backward from the cell on the branch point all the way back to the root cell (the cell with pseudotime 0) and use all those cells as the the pre-branch.
从结果说明可以看到,Pre−branch包含的细胞为 2, 3, 5。


'cell fate 1' and 'cell fate 2'

cell fate 1和cell fate 2到底指什么?比如还是这里的branch point 3为例:

Cell fate 1 corresponds to the state with small id (in this case, state 1) while cell fate 2 corresponds to sate with bigger id (in this case, state 2)
从说明文档中可以看出:

  • [x] Cell fate 1:state 1
  • [x] Cell fate 2:state 7

其他场景Pre−branch说明

如果比较state4和state7,Pre−branch又是哪些细胞?

this is a very good question since state 4 relates to branch point 2 while state 7 relates to branch point 3. For this test, the pre-branch will only include cells from state 2.
这里的Pre−branch仅仅包含state2细胞。

后记

此文仅仅记录了分支点依赖相关基因的解读,其他的解读后续在说明。

plot_multiple_branches_pseudotime函数说明

plot_multiple_branches_pseudotime:Create a kinetic curves to demonstrate the bifurcation of gene expression along multiple branches。
此函数可以进行多个分支点进行比较分析。

plot_multiple_branches_pseudotime(cds, branches, branches_name = NULL,min_expr = NULL, cell_size = 0.75, norm_method = c("vstExprs", "log"),nrow = NULL, ncol = 1, panel_order = NULL, color_by = "Branch",
trend_formula = "~sm.ns(Pseudotime, df=3)", label_by_short_name = TRUE,TPM = FALSE, cores = 1)
#示范命令
plot_multiple_branches_heatmap(celltrajectory.monocle, branches = c(6,7),
cluster_rows = TRUE, hclust_method = "ward.D2", num_clusters = 6,
hmcols = NULL, add_annotation_row = NULL, add_annotation_col = NULL,
show_rownames = FALSE, use_gene_short_name = TRUE,
norm_method = c("vstExprs", "log"), scale_max = 3, scale_min = -3,
trend_formula = "~sm.ns(Pseudotime, df=3)", return_heatmap = FALSE,
cores = 1)

热图的每一列代表什么?

If you're looking for a deeper understanding of what the function is doing, I'd recommend digging into the source code for the function. The plot_genes_branched_heatmap function is in R/plotting.R, but it calls a nested function (buildBranchCellDataSet) that's contained in R/BEAM.R. I found it valuable to run through the code line by line and see what variables get made/changed.

But to briefly answer your question, monocle orders your cells along the trajectory, giving each cell a pseudotime value. Now, with expression values for each gene at different points in pseudotime (ie. each cell), it uses a VGLM with splines to fit non-linear expression dynamics as a function of pseudotime. This model can then directly be used for differential expression if desired (eg. using a likelihood ratio test against a reduced model that doesn't incorporate pseudotime). For plotting a heatmap though, there's a problem: the pseudotime values for your cells do not increase by sequential integers (ie. 1,2,3,..,n). This is because monocle was designed, recognizing that the jump between cells along a trajectory aren't always the same distance. So if you were to make a heatmap, your column representation of pseudotime wouldn't be linear--it will depend on your sampling density along the trajectory. It could go, for example, 1,1.15,1.25,5,6,6.25,10 (see the problem?). So what the plotting function does (more specifically, a function called genSmoothCurves) is use the constructed models from before to predict gene expression of all genes along 100 evenly spaced pseudotime values spanning the range, and then makes a heatmap of those predictions rather than your scRNA-Seq measurements themselves. Each column represents those one of those 100 pseudotime values.

The branched heatmap function is similar, except things are ordered differently. Those modelled values are ordered from the middle of the heatmap outwards. The left and right directions represent the modelled expression for two separate branches of the trajectory. The small region in the middle that is symmetrical represents the "progenitors" (the nomenclature used by the devs) prior to the branchpoint, and the point moving outwards where that symmetry breaks is the bifurcation point of the two independent branches. Going through the source code for this would really help make this clear.

简而言之,就是根据的拟时间值的范围,分成100个bin,每个bin中代表一个拟时间值。

参考资料

官方说明:How to map cell fate to branches?
plot_multiple_branches_pseudotime源代码
Understanding plot_genes_branched_heatmap columns

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,279评论 0 10
  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,355评论 0 23
  • Chapter 1 In the year 1878, I took my degree of Doctor of...
    foxgti阅读 3,638评论 0 6
  • 我终于说服自己鼓起勇气与孩子爸爸一起去见了班主任老师。因为儿子的成绩所以我们一直羞与去见老师,一来怕被认为家长管不...
    冯梅fm阅读 260评论 0 4
  • 辛苦楚然,这么远,在发烧的情况下,还大老远赶到武汉来限给了我们武汉同学一个机会,让大家又有可以找个机会聚在一起,真...
    天文向上阅读 229评论 1 3