常见排序算法(7)--快速排序

假设我们现在对“6 1 2 7 9 3 4 5 10 8”这个 10 个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便,就让第一个数 6 作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在 6 的右边,比基准数小的数放在 6 的左边,类似下面这种排列。
3 1 2 5 4 6 9 7 10 8
在初始状态下,数字 6 在序列的第 0 位。我们的目标是将 6 挪到序列中间的某个位置,假设这个位置是 k。现在就需要寻找这个 k,并且以第 k 位为分界点,左边的数都小于等于 6,右边的数都大于等于 6。想一想,你有办法可以做到这点吗?

方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从右往左找一个小于 6 的数,再从左往右找一个大于 6 的数,然后交换他们。这里可以用两个变量 i 和 j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵 i”和“哨兵 j”。刚开始的时候让哨兵 i 指向序列的最左边(即 i=0),指向数字 6。让哨兵 j 指向序列的最右边(即 j=9),指向数字 8。


首先哨兵 j 开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵 j 先出动,这一点非常重要(请自己想一想为什么)。哨兵 j 一步一步地向左挪动(即 j--),直到找到一个小于 6 的数停下来。接下来哨兵 i 再一步一步向右挪动(即 i++),直到找到一个数大于 6 的数停下来。最后哨兵 j 停在了数字 5 面前,哨兵 i 停在了数字 7 面前。

现在交换哨兵 i 和哨兵 j 所指向的元素的值。交换之后的序列如下。
6 1 2 5 9 3 4 7 10 8

到此,第一次交换结束。接下来开始哨兵 j 继续向左挪动(再友情提醒,每次必须是哨兵 j 先出发)。他发现了 4(比基准数 6 要小,满足要求)之后停了下来。哨兵 i 也继续向右挪动的,他发现了 9(比基准数 6 要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下。
6 1 2 5 4 3 9 7 10 8

第二次交换结束,“探测”继续。哨兵 j 继续向左挪动,他发现了 3(比基准数 6 要小,满足要求)之后又停了下来。哨兵 i 继续向右移动,糟啦!此时哨兵 i 和哨兵 j 相遇了,哨兵 i 和哨兵 j 都走到 3 面前。说明此时“探测”结束。我们将基准数 6 和 3 进行交换。交换之后的序列如下。
3 1 2 5 4 6 9 7 10 8


到此第一轮“探测”真正结束。此时以基准数 6 为分界点,6 左边的数都小于等于 6,6 右边的数都大于等于 6。回顾一下刚才的过程,其实哨兵 j 的使命就是要找小于基准数的数,而哨兵 i 的使命就是要找大于基准数的数,直到 i 和 j 碰头为止。
OK,解释完毕。现在基准数 6 已经归位,它正好处在序列的第 5 位。此时我们已经将原来的序列,以 6 为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“ 9 7 10 8 ”。接下来还需要分别处理这两个序列。因为 6 左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理 6 左边和右边的序列即可。现在先来处理 6 左边的序列现吧。

左边的序列是“3 1 2 5 4”。请将这个序列以 3 为基准数进行调整,使得 3 左边的数都小于等于 3,3 右边的数都大于等于 3。好了开始动笔吧。

如果你模拟的没有错,调整完毕之后的序列的顺序应该是。

2 1 3 5 4

OK,现在 3 已经归位。接下来需要处理 3 左边的序列“ 2 1 ”和右边的序列“5 4”。对序列“ 2 1 ”以 2 为基准数进行调整,处理完毕之后的序列为“1 2”,到此 2 已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“ 2 1 ”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下。

1 2 3 4 5 6 9 7 10 8

对于序列“9 7 10 8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下。

1 2 3 4 5 6 7 8 9 10

到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程


快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是 O(N2),它的平均时间复杂度为 O(NlogN)。其实快速排序是基于一种叫做“二分”的思想。先上代码,如下。

// 快速排序
void QuickSort(int *arr, int length)
{
    QSort(arr, 0, length-1);
}
void QSort(int *arr,int low, int high)
{
    int i,j,temp;
    if (low >= high)
    {
        return;
    }
    temp = arr[low];
    i = low;
    j = high;
    while (i != j)
    {
        //顺序很重要,要先从右边开始找
        while(arr[j]>=temp && i<j)
        {
            j--;
        }
        //再找右边的
        while(arr[i]<=temp && i<j)
        {
            i++;
        }
        if (i < j)
        {
            swap(arr, i, j);
        }
    }
    //最终将基准数归位
    arr[low] = arr[i];
    arr[i] = temp;
    
    QSort(arr,low,i-1);//继续处理左边的,这里是一个递归的过程
    QSort(arr,i+1,high);//继续处理右边的 ,这里是一个递归的过程
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容

  • 简单来说,时间复杂度指的是语句执行次数,空间复杂度指的是算法所占的存储空间 时间复杂度计算时间复杂度的方法: 用常...
    Teci阅读 1,080评论 0 1
  • 转自 坐在马桶上看算法:快速排序转自 坐在马桶上看算法:快速排序算法的精髓在于,跟它一比高数也显得那么生动活泼…。...
    Wide_Star阅读 237评论 0 0
  • 高快省的排序算法 有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光听这个名字是不是就觉得很高端...
    博弈史密斯阅读 403评论 0 0
  • 上一节的冒泡排序可以说是我们学习的第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲...
    青葱烈马阅读 650评论 0 1
  • 排序也就是使集合中的元素有序化,他是常见的计算机操作之一,主要介绍几种经典的排序方法:冒泡排序,插入排序,快速排序...
    螺丝钉25阅读 284评论 0 0