首个深度学习web应用,基于Flask和Keras

缘起

随着疫情缓解,在家自学TF、看看论文然后混吃喝的happy日子被迫结束T T。前往一家互联网公司的web开发组实习。期间,接触到了很多之前完全不了解的方方面面,促使我从程序员职业的角度开始思考自己的未来,这部分另有博客分析。这里主要介绍我利用摸鱼时间把学到的web开发内容和机器学习结合起来,完成的我的第一个web应用!

功能隐约眼熟?

如果看了后面的界面和功能,眼尖的人一定会发现,没错,本应用在结构上参考了塞巴斯蒂安的Python Machine Learning第九章。主要区别有:

  • 我使用的keras预训练模型进行fine tuning,书中使用的scikit;
  • 我使用图片上传,返回图片分类和分类概率,书中是电影评论的情感分析;
  • 我使用了多线程来降低更新模型的等待时间;
  • 我没有使用SQL数据库,而是在文件夹中保存图片。

为什么使用Flask和keras?

使用keras是因为其提供了预训练的MobileNet权重,非常适合拿来迁移学习做fine tunning。这样在CPU上做推理的时候,假设中的用户不会等的想砸电脑。不过我也没有实际去探究哪些预训练的模型做推理效率高。

其实,python进行web开发实在是小众,实习中后端还是用的Java+Spring MVC,前端用的js+VUE。但是Flask作为轻量级的后端框架,最大的好处就是python的后端代码和keras的模型训练等语法可以无缝衔接。并且小白一个人开发整个应用,并不会JS,所以flask的模板引擎jinja2提供了很简易(但丑)的前端,只需掌握基本的html语法就能写出前端。

功能和界面

参考Python Machine Learning第九章,用户使用的流程是

在这里插入图片描述

光秃秃的选择文件表单和上传按钮0.0
在这里插入图片描述

因为后面代码中secure_filename()的存在,这里偷懒,只支持英文命名的JPG和PNG格式图片,后缀不区分大小写。如果上传中文,会显示“only support ASCII name”。
在这里插入图片描述

这一步

  1. 图片上传至./uploads保存;
  2. ./uploads取出图片放入./static/images,并用保存的MobileNet权重对图片进行推理;
  3. 前端显示上传图片、分类和分类概率;

用户可以根据自己的判断选择应用分类的正确或者错误,用于给图片打标签,后续扩充训练集,更新模型权重。

点击确认后
  1. 点击确认后,如果存在同名文件会提示"File already exists or has the same name";
  2. 否则根据用户选择的CorrectIncorrect将新图片移入./static/image/Cat或者./static/image/Dog。相当于将确认图片打上标签,扩充训练集,用于更新模型权重。
  3. 模型权重更新需要重新训练,耗时较长,故使用子线程后台运行,先返回前端,再完成更新。

Note: 上文中的相对路径都是相对于app.py的。

项目结构和代码

目录结构

│  app.py
│  repredict.py                       加载权重用于预测
│  TryMobile.py                       更新权重
├─static
│  │  cats_dog_mobileNet.h5            用于预测的权重
│  │  files_cat.npy
│  │  files_dog.npy                    保存新增标签图片path的numpy数组
│  │  style.css                        从flask教程白嫖来的样式表
│  └─images
│      │                               存放用户未提供反馈,没打标签的图片
│      ├─Cat
│      │                               存放标签为猫的图片 
│      └─Dog
├─templates
│      show.html
│      thanks.html
│      upload.html
└─uploads                               保存所有上传图片

代码

请见我的github仓库 MobileNet_Flask_Web_Application 欢迎各位大佬来star、提issue,共同学习~

Fine-tunning

使用Keras自带的Mobilenet在ImageNet上训练的.h5文件,去掉其分类器部分:最后的GAP层和Softmax层,替换为两层FC分类器

 x = Dense(1024, activation='relu')(x)
    #添加类别分类器,只有两类
classifier = Dense(1, activation='sigmoid')(x)

最后一层的激活函数使用sigmoid,用于二分类(原来是1000类)。使用2000张猫和狗的图片作为训练集,1000张做验证集,在CPU上用了约20分钟5轮将验证集精度达到90%以上。

总结

整个项目的功能到实现都是我拍脑袋想的,而且我是零web开发基础,所以和实际应用肯定有很多不符之处,还要很多可以改进之处,这里略举几例:

  • 用户恶意打标签可以让权重崩坏
  • 图片似乎保存太多次,占空间,而且IO操作拖慢速度
  • 最后的更新权重线程还是要结束之后才能重新用于预测

实习期间的收获有:

  1. 学习SQL基础,对数据库和后端的关系有了基本了解,不过在这个项目中并没有用上;
  2. 学习Flask框架,并用于开发博客、AI应用,实践了将keras模型嵌入到web应用中;
  3. 学习html基础,能根据手册大致读懂文件;

本文同时发布于知乎,CSDN。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342