FFM原理与实践简单理解

点击率CTR(click-through rate)和转化率CVR(conversion rate)是衡量广告流量的两个关键指标。准确的估计CTR、CVR对于提高流量的价值,增加广告收入有重要的指导作用。
预估CTR/CVR,业界常用的方法有
人工特征工程 + LR(Logistic Regression)
GBDT(Gradient Boosting Decision Tree) + LR(Logistic Regression)
FM(Factorization Machine)
FFM(Field-aware Factorization Machine)模型
DSP(Demand Side Platform)

1.首先介绍FM的原理

2.介绍FFM对FM的改进

3.介绍FFM的实现细节

4.介绍模型在DSP场景的应用

FM(Factorization Machine)
因式分解机 应用范围 解决稀疏数据下的特征组合问题
问题原因 :经过One-Hot编码之后,样本的维度大幅增加,大部分样本数据特征是比较稀疏的。
通过观察大量的样本数据可以发现,某些特征经过关联之后,与label之间的相关性就会提高。那么如何进行特征组合就是问题的关键。
多项式模型是包含特征组合的最直观的模型。
对于二阶多项式模型,两个特征之间,假设参数相互独立。
在数据稀疏性普遍存在的实际应用场景中,二次项参数的训练是很困难的。其原因是,每个参数 wijwij 的训练需要大量 xixi 和 xjxj 都非零的样本;由于样本数据本来就比较稀疏,满足“xixi 和 xjxj 都非零”的样本将会非常少。训练样本的不足,很容易导致参数 wijwij 不准确,最终将严重影响模型的性能。

解决二次项参数训练问题的办法:
矩阵分解
对二阶多项式参数进行矩阵分解
即N * N = (Ni) * (iN)
把以前的高维度矩阵拆开成两个低维度的矩阵就可以了
一个特征的隐变量应该理解为这个特征的低维度向量表示
所有包含“xixi 的非零组合特征”(存在某个 j≠ij≠i,使得 xixj≠0xixj≠0)的样本都可以用来学习隐向量 vivi,这很大程度上避免了数据稀疏性造成的影响。

矩阵分解后的二次参数

进行变换以方便计算
使用随机梯度下降进行收敛

FM在样本稀疏的情况下有优势。
FM的训练/预测复杂度是线性的,而二项多项式核SVM需要计算核矩阵,核矩阵复杂度就是N平方。

FFM原理 : 相同性质的特征归于同一个field
同一个categorical特征经过One-Hot编码生成的数值特征都可以放到同一个field。

FFM的使用:所有的特征必须转换成“field_id:feat_id:value”格式,field_id代表特征所属field的编号,feat_id是特征编号,value是特征的值

数值型的特征比较容易处理,只需分配单独的field编号,如用户评论得分、商品的历史CTR/CVR等。categorical特征需要经过One-Hot编码成数值型,编码产生的所有特征同属于一个field,而特征的值只能是0或1,如用户的性别、年龄段,商品的品类id等。除此之外,还有第三类特征,如用户浏览/购买品类,有多个品类id且用一个数值衡量用户浏览或购买每个品类商品的数量。这类特征按照categorical特征处理,不同的只是特征的值不是0或1,而是代表用户浏览或购买数量的数值。按前述方法得到field_id之后,再对转换后特征顺序编号,得到feat_id,特征的值也可以按照之前的方法获得。

在训练FFM的过程中,有许多小细节值得特别关注。
第一,样本层面的数据是推荐进行归一化的。
第二,特征归一化。尤其是数值型特征归一化。CTR/CVR模型采用了多种类型的源特征,包括数值型和categorical类型等。但是,categorical类编码后的特征取值只有0或1,较大的数值型特征会造成样本归一化后categorical类生成特征的值非常小,没有区分性。例如,一条用户-商品记录,用户为“男”性,商品的销量是5000个(假设其它特征的值为零),那么归一化后特征“sex=male”(性别为男)的值略小于0.0002,而“volume”(销量)的值近似为1。特征“sex=male”在这个样本中的作用几乎可以忽略不计,这是相当不合理的。因此,将源数值型特征的值归一化到 [0,1] 是非常必要的。
第三,省略零值特征。从FFM模型的表达式(4)
可以看出,零值特征对模型完全没有贡献。包含零值特征的一次项和组合项均为零,对于训练模型参数或者目标值预估是没有作用的。因此,可以省去零值特征,提高FFM模型训练和预测的速度,这也是稀疏样本采用FFM的显著优势。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,830评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,992评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,875评论 0 331
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,837评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,734评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,091评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,550评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,217评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,368评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,298评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,350评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,027评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,623评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,706评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,940评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,349评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,936评论 2 341

推荐阅读更多精彩内容