Keras的介绍和配置

Keras是目前相对比较好的基于Python的深度学习库。Keras特别友好,可以让人快速实现自己的模型,是机器学习入门的不二人选。

Keras的设计原则是:

  • 用户友好:Keras是为人类而不是天顶星人设计的API。用户的使用体验始终是我们考虑的首要和中心内容。Keras遵循减少认知困难的最佳实践:Keras提供一致而简洁的API, 能够极大减少一般应用下用户的工作量,同时,Keras提供清晰和具有实践意义的bug反馈。
  • 模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。
  • 易扩展性:添加新模块超级容易,只需要仿照现有的模块编写新的类或函数即可。创建新模块的便利性使得Keras更适合于先进的研究工作。
    与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描述,使其更紧凑和更易debug,并提供了扩展的便利性。

当然有利也有弊,通常方便的同时意味着就是扩展性差。对于绝大多数人来说,创建自己的模型难度还是比较大的。因此这并不算是缺点。

Keras拥有官方中文文档,对于读洋文很费劲的我们也是相当友好的。

我用的是Windows配置Keras。因为Keras需要Tensorflow或者Theano作为后端,并且默认Tensorflow。所以我在配置好Keras的时候,已经顺便把Tensorflow配置好了。

需要注意的是,这里有一个神坑,我就被坑了一个星期。

这是一个无可奈何的问题,在如何表示一组彩色图片的问题上,Theano和TensorFlow发生了分歧,'th'模式,也即Theano模式会把100张RGB三通道的16×32(高为16宽为32)彩色图表示为下面这种形式(100,3,16,32),Caffe采取的也是这种方式。第0个维度是样本维,代表样本的数目,第1个维度是通道维,代表颜色通道数。后面两个就是高和宽了。这种theano风格的数据组织方法,称为“channels_first”,即通道维靠前。而TensorFlow,的表达形式是(100,16,32,3),即把通道维放在了最后,这种数据组织方式称为“channels_last”。

因为网上绝大多数代码都是以Theano作为后端的,因此也是采用的前者的方式。而如果我在卷积层设置padding='same‘,那么即使shape不符合,层也能把数据自动填充,也能训练出结果。因此,我才被忽悠了一个星期。直到后来发现了这个问题。

Keras的配置,我们可以直接在官网的Keras安装和配置指南(Windows)看到。

在配置Keras之前,我们需要一台Windows7以上,最好是Windows10的电脑。如果需要显卡编程,我们需要安装Microsoft Visual Studio2015。(当然我的电脑估计是不需要了)。在这个基础上,配置越强越好。

我们还需要Python。需要注意的是,Python版本不是越高越好,我的电脑里面一开始是Python3.7,后来安装Keras的时候就崩了。建议按照教程,安装Anconda3 4.3.0。这是一个科学计算集成Python发行版。安装了它,等于很多和科学计算有关的库都被安装了,避免了后面的麻烦。(曾经我做数据挖掘的作业的时候,要是知道有这个东西,也不用崩溃到上Linux做了。)

如果只安装CPU版本,只需要再输入命令:

# CPU 版本
>>> pip install --upgrade tensorflow

# Keras 安装
>>> pip install keras -U --pre

然后进入Python命令行:

>>> import keras

Using Tensorflow backend.

如果没有报错,那么就是成功了。

如果安装GPU版本,则需要先安装CUDA和加速库CuDNN。这个过程比较复杂。看Keras官网的教程就行了。我是直接拷贝了朋友的安装包。

最后安装好了之后:

# GPU 版本
>>> pip install --upgrade tensorflow-gpu

# Keras 安装
>>> pip install keras -U --pre

这样Keras就安装好了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容