Pix2Seq v2:视觉任务的统一序列接口

A Unified Sequence Interface for Vision Tasks

15 Jun 2022

https://arxiv.org/abs/2206.07669

Authors: Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J. Fleet, Geoffrey Hinton

The first three authors contributed equally

Abstract: While language tasks are naturally expressed in a single, unified, modeling framework, i.e., generating sequences of tokens, this has not been the case in computer vision. As a result, there is a proliferation of distinct architectures and loss functions for different vision tasks. In this work we show that a diverse set of "core" computer vision tasks can also be unified if formulated in terms of a shared pixel-to-sequence interface. We focus on four tasks, namely, object detection, instance segmentation, keypoint detection, and image captioning, all with diverse types of outputs, e.g., bounding boxes or dense masks. Despite that, by formulating the output of each task as a sequence of discrete tokens with a unified interface, we show that one can train a neural network with a single model architecture and loss function on all these tasks, with no task-specific customization. To solve a specific task, we use a short prompt as task description, and the sequence output adapts to the prompt so it can produce task-specific output. We show that such a model can achieve competitive performance compared to well-established task-specific models. 

虽然语言任务自然地表达在一个统一的建模框架中,即生成标记序列,但在计算机视觉中并非如此。因此,针对不同的视觉任务,不同的体系结构激增,功能缺失。在这项工作中,我们表明,如果按照共享的像素到序列接口来制定,那么一组不同的“核心”计算机视觉任务也可以统一。我们专注于四项任务,即目标检测、实例分割、关键点检测和图像字幕,所有这些任务都具有不同类型的输出,例如边界框或密集遮罩。尽管如此,通过将每个任务的输出表示为具有统一接口的离散标记序列,我们表明可以在所有这些任务上训练具有单一模型架构和损失函数的神经网络,而无需特定于任务的定制。为了解决特定的任务,我们使用一个简短的提示作为任务描述,序列输出根据提示进行调整,以便生成特定于任务的输出。我们表明,与成熟的任务特定模型相比,这样的模型可以实现有竞争力的性能。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 字符串 1.什么是字符串 使用单引号或者双引号括起来的字符集就是字符串。 引号中单独的符号、数字、字母等叫字符。 ...
    mango_2e17阅读 7,493评论 1 7
  • 《闭上眼睛才能看清楚自己》这本书是香海禅寺主持贤宗法师的人生体悟,修行心得及讲学录,此书从六个章节讲述了禅修是什么...
    宜均阅读 9,984评论 1 25
  • 前言 Google Play应用市场对于应用的targetSdkVersion有了更为严格的要求。从 2018 年...
    申国骏阅读 63,925评论 14 98
  • 第七章:理性的投资观 字数: 1.投资要围绕目的进行 投资的目的是为了挣钱。投资的除了金钱还有时间和精力也是一种投...
    幸福萍宝阅读 3,316评论 1 2
  • 本文转载自微信公众号“电子搬砖师”,原文链接 这篇文章会以特别形象通俗的方式讲讲什么是PID。 很多人看到网上写的...
    这个飞宏不太冷阅读 6,783评论 2 15