对于下面一个序列:
2,1,5,3,6,4,8,9,7
求其最长递增子序列(可以不连续但顺序不可变)
解法一:动态规划法(O(N^2))
既然是动态规划法,那么最重要的自然就是寻找子问题,对于这个问题,我们找到他的子问题:
对于长度为N的数组A[N] = {a0, a1, a2, ..., an-1},假设假设我们想求以aj结尾的最大递增子序列长度,设为L[j],那么L[j] = max(L[i]) + 1, where i < j && a[i] < a[j], 也就是i的范围是0到j - 1。这样,想求aj结尾的最大递增子序列的长度,我们就需要遍历j之前的所有位置i(0到j-1),找出a[i] < a[j],计算这些i中,能产生最大L[i]的i,之后就可以求出L[j]。之后我对每一个A[N]中的元素都计算以他们各自结尾的最大递增子序列的长度,这些长度的最大值,就是我们要求的问题——数组A的最大递增子序列。
时间复杂度:由于每一次都要与之前的所有i做比较,这样时间复杂度为O(N^2)。
解法二:动态规划法(O(NlogN))
上面的解法时间复杂度为O(N^2)。仔细分析一下原因,之所以慢,是因为对于每一个新的位置j都需要遍历j之前的所以位置,找出之前位置最长递增子序列长度。那么我们是不是可以有一中方法能不用遍历之前所有的位置,而可以更快的确定i的位置呢?
这就需要申请一个长度为N的空间,B[N],用变量len记录现在的最长递增子序列的长度。
B数组内任意元素B[i],记录的是最长递增子序列长度为i的序列的末尾元素的值,也就是这个最长递增子序列的最大元素的大小值。同时,后面会发现B[1...i]也是一个单调递增序列。
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,因为2比1大,1在后续的价值要大。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
注意,这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
补充:
假如x<y<t且a[x]<a[y],f[x]=f[y](其中f[x]表示a[1...x]的序列其最长递增子序列的长度),也就是说选取x,y都可以更新得到相同的f[t]的值,那么选取谁呢。显然选取x会更优,因为在a[x]…a[y]中如果存在a[z],使得a[x]<a[z]<a[y],那么就可以通过x得到更长的最长不降子序列的值。
根据f的值进行分类,我们只需要保留满足f[t]=k的所有a[t]中的最小值,设d[k]记录这个值,即d[k]:=min{a[t]}(f[t]=k),也就是k表示最长递增子序列的长度。
我们注意到d有两个特点:
1. d[k]的更新值在整个过程中是单调不上升的。
2. d数组是有序的。即d[1]<d[2]<...<d[k]
利用d,我们可以得到一种计算最长上升子序列的方法。设当前已经求出的最长上升序
列的长度为len,每次读入一个新元素x。
如果x>d[len]将其直接假如d,inc(len)得到更长的序列
否则,在d中查找到第一个比该元素小的元素d[k],将该元素加入,d[k+1]:=x;如果使用
顺序查找效率会很低,所以采用二分查找,将其复杂度降为log级,难点在于二分查找。
本题中的单调队列的出现时利用决策的性质,用元素在动归中的价值分类。在入队操做
时并未让所有元素出队,而是直接插入相应位置(实质是替换更新),这是根据题目的特殊性决定的。对于一个单调的序列往往用二分法。