R语言机器学习与临床预测模型69--机器学习模型解释利器:SHAP

R小盐准备介绍R语言机器学习与预测模型的学习笔记, 快来收藏关注【科研私家菜】


01 机器学习的可解释性

对于集成学习方法,效果虽好,但一直无法解决可解释性的问题。我们知道一个xgboost或lightgbm模型,是由N棵树组成,所以对于特定的一个样本,我们无法知道这个样本的特征值是如何影响最终结果。虽说“不管白猫黑猫,抓住耗子的就是好猫”,但在具体任务中,我们还是希望能够获得样本每个特征与其结果之间的关系,特别是针对模型误分的那些样本,如果能够从特征和结果的角度进行分析,对于提高模型效果或是分析异常样本,是非常有帮助的。但是,其可解释性相对困难。
对于集成树模型来说,当做分类任务时,模型输出的是一个概率值。前文提到,SHAP是SHapley Additive exPlanations的缩写,即沙普利加和解释,因此SHAP实际是将输出值归因到每一个特征的shapely值上,换句话说,就是计算每一个特征的shapley值,依此来衡量特征对最终输出值的影响。

其原理及推到公式不再赘述。。。

02 SHAP的R语言实现

SHAP(SHapley Additive exPlanations)

library(tidyverse)
library(xgboost)
library(caret)
library(dplyr)
source("shap.R")

bike <- read.csv("../shap-values-master/bike.csv",header = T)


bike_2=select(bike, -days_since_2011, -cnt, -yr)

bike_dmy = dummyVars(" ~ .", data = bike_2, fullRank=T)
bike_x = predict(bike_dmy, newdata = bike_2)

## Create the xgboost model
model_bike = xgboost(data = bike_x, 
                   nround = 10, 
                   objective="reg:linear",
                   label= bike$cnt)  


## Calculate shap values
shap_result_bike = shap.score.rank(xgb_model = model_bike, 
                              X_train =bike_x,
                              shap_approx = F
                              )

# `shap_approx` comes from `approxcontrib` from xgboost documentation. 
# Faster but less accurate if true. Read more: help(xgboost)

## Plot var importance based on SHAP
var_importance(shap_result_bike, top_n=15)

## Prepare data for top N variables
shap_long_bike = shap.prep(shap = shap_result_bike,
                           X_train = bike_x , 
                           top_n = 10
                           )

## Plot shap overall metrics
plot.shap.summary(data_long = shap_long_bike)


## 
xgb.plot.shap(data = bike_x, # input data
              model = model_bike, # xgboost model
              features = names(shap_result_bike$mean_shap_score[1:10]), # only top 10 var
              n_col = 3, # layout option
              plot_loess = T # add red line to plot
              )

效果如下:



03 SHAP R语言示例

data("iris")
X1 = as.matrix(iris[,-5])
mod1 = xgboost::xgboost(
  data = X1, label = iris$Species, gamma = 0, eta = 1,
  lambda = 0, nrounds = 1, verbose = FALSE)

# shap.values(model, X_dataset) returns the SHAP
# data matrix and ranked features by mean|SHAP|
shap_values <- shap.values(xgb_model = mod1, X_train = X1)
shap_values$mean_shap_score
shap_values_iris <- shap_values$shap_score

# shap.prep() returns the long-format SHAP data from either model or
shap_long_iris <- shap.prep(xgb_model = mod1, X_train = X1)
# is the same as: using given shap_contrib
shap_long_iris <- shap.prep(shap_contrib = shap_values_iris, X_train = X1)

# **SHAP summary plot**
shap.plot.summary(shap_long_iris, scientific = TRUE)
shap.plot.summary(shap_long_iris, x_bound  = 1.5, dilute = 10)

# Alternatives options to make the same plot:
# option 1: from the xgboost model
shap.plot.summary.wrap1(mod1, X = as.matrix(iris[,-5]), top_n = 3)

# option 2: supply a self-made SHAP values dataset
# (e.g. sometimes as output from cross-validation)
shap.plot.summary.wrap2(shap_score = shap_values_iris, X = X1, top_n = 3)

效果如下:




关注R小盐,关注科研私家菜(VX_GZH: SciPrivate),有问题请联系R小盐。让我们一起来学习 R语言机器学习与临床预测模型

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容