Tensorflow实践:CNN实现MNIST手写识别模型

转载请注明出处:http://www.jianshu.com/p/904a1a436b46

前言

本文假设大家对CNN、softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上。所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出最终运行代码。如果对Tensorflow的一些基本操作不熟悉的话,推荐先看下极客学院的这篇文章再回来看本文。

数据集

数据集是MNIST,一个入门级的计算机视觉数据集,它包含各种手写数字图片:


MNIST数据示例

每张图片包含28X28个像素点,标签即为图片中的数字。

问题

使用MNIST数据集进行训练,识别图片中的手写数字(0到9共10类)。

思路

使用一个简单的CNN网络结构如下,括号里边表示tensor经过本层后的输出shape:

  • 输入层(28 * 28 * 1)
  • 卷积层1(28 * 28 * 32)
  • pooling层1(14 * 14 * 32)
  • 卷积层2(14 * 14 * 64)
  • pooling层2(7 * 7 * 64)
  • 全连接层(1 * 1024)
  • softmax层(10)

具体的参数看后边的代码注释。

函数说明

在撸代码前,先对几个会用到的主要函数中的主要参数进行说明。

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

随机产生一个形状为shape的服从截断正态分布(均值为mean,标准差为stddev)的tensor。截断的方法根据官方API的定义为,如果单次随机生成的值偏离均值2倍标准差之外,就丢弃并重新随机生成一个新的数。

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

  • input
    input是一个形状为[batch, in_height, in_width, in_channels]的tensor:
    • batch
      每次batch数据的数量。
      • in_height,in_width
        输入矩阵的高和宽,如输入层的图片是28*28,则in_height和in_width就都为28。
    • in_channels
      输入通道数量。如输入层的图片经过了二值化,则通道为1,如果输入层的图片是RGB彩色的,则通道为3;再如卷积层1有32个通道,则pooling层1的输入(卷积层1的输出)即为32通道。
  • filter
    filter是一个形状为[filter_height, filter_width, in_channels, out_channels]的tensor:
    • filter_height, filter_width
      卷积核的高与宽。如卷积层1中的卷积核,filter_height, filter_width都为28。
    • in_channels
      输入通道数量。
    • out_channels
      输出通道的数量。如输入数据经过卷积层1后,通道数量从1变为32。
  • strides
    strides是指滑动窗口(卷积核)的滑动规则,包含4个维度,分别对应input的4个维度,即每次在input tensor上滑动时的步长。其中batch和in_channels维度一般都设置为1,所以形状为[1, stride, stride, 1]
  • padding
    这个在之前的文章中说过,这里不再复述,看这里回顾。

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)

  • value
    以tf.nn.conv2d()函数的参数input理解即可。
  • ksize
    滑动窗口(pool)的大小尺寸,这里注意这个大小尺寸并不仅仅指2维上的高和宽,ksize的每个维度同样对应input的各个维度(只是大小,不是滑动步长),同样的,batch和in_channels维度多设置为1。如pooling层1的ksize即为[1, 2, 2, 1],即用一个2*2的窗口做pooling。
  • strides
    同tf.nn.conv2d()函数的参数strides。
  • padding
    这里

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

这里不对dropout的算法进行描述,如果不知道自行百度。

  • x
    输入tensor。
  • keep_prob
    x中每个元素的输出概率,输出为原值或0。

代码

talk is cheap, show me the code.

#coding:utf-8
import tensorflow as tf
import MNIST_data.input_data as input_data
import time

"""
权重初始化
初始化为一个接近0的很小的正数
"""
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev = 0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape = shape)
    return tf.Variable(initial)

"""
卷积和池化,使用卷积步长为1(stride size),0边距(padding size)
池化用简单传统的2x2大小的模板做max pooling
"""
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'SAME')
    # tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
    # x(input)  : [batch, in_height, in_width, in_channels]
    # W(filter) : [filter_height, filter_width, in_channels, out_channels]
    # strides   : The stride of the sliding window for each dimension of input.
    #             For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1]

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
                          strides = [1, 2, 2, 1], padding = 'SAME')
    # tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
    # x(value)              : [batch, height, width, channels]
    # ksize(pool大小)        : A list of ints that has length >= 4. The size of the window for each dimension of the input tensor.
    # strides(pool滑动大小)   : A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor.

start = time.clock() #计算开始时间
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #MNIST数据输入

"""
第一层 卷积层

x_image(batch, 28, 28, 1) -> h_pool1(batch, 14, 14, 32)
"""
x = tf.placeholder(tf.float32,[None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1]) #最后一维代表通道数目,如果是rgb则为3 
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# x_image -> [batch, in_height, in_width, in_channels]
#            [batch, 28, 28, 1]
# W_conv1 -> [filter_height, filter_width, in_channels, out_channels]
#            [5, 5, 1, 32]
# output  -> [batch, out_height, out_width, out_channels]
#            [batch, 28, 28, 32]
h_pool1 = max_pool_2x2(h_conv1)
# h_conv1 -> [batch, in_height, in_weight, in_channels]
#            [batch, 28, 28, 32]
# output  -> [batch, out_height, out_weight, out_channels]
#            [batch, 14, 14, 32]

"""
第二层 卷积层

h_pool1(batch, 14, 14, 32) -> h_pool2(batch, 7, 7, 64)
"""
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# h_pool1 -> [batch, 14, 14, 32]
# W_conv2 -> [5, 5, 32, 64]
# output  -> [batch, 14, 14, 64]
h_pool2 = max_pool_2x2(h_conv2)
# h_conv2 -> [batch, 14, 14, 64]
# output  -> [batch, 7, 7, 64]

"""
第三层 全连接层

h_pool2(batch, 7, 7, 64) -> h_fc1(1, 1024)
"""
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

"""
Dropout

h_fc1 -> h_fc1_drop, 训练中启用,测试中关闭
"""
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

"""
第四层 Softmax输出层
"""
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

"""
训练和评估模型

ADAM优化器来做梯度最速下降,feed_dict中加入参数keep_prob控制dropout比例
"""
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #计算交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #使用adam优化器来以0.0001的学习率来进行微调
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) #判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))

sess = tf.Session() #启动创建的模型
sess.run(tf.initialize_all_variables()) #旧版本
#sess.run(tf.global_variables_initializer()) #初始化变量

for i in range(5000): #开始训练模型,循环训练5000次
    batch = mnist.train.next_batch(50) #batch大小设置为50
    if i % 100 == 0:
        train_accuracy = accuracy.eval(session = sess,
                                       feed_dict = {x:batch[0], y_:batch[1], keep_prob:1.0})
        print("step %d, train_accuracy %g" %(i, train_accuracy))
    train_step.run(session = sess, feed_dict = {x:batch[0], y_:batch[1],
                   keep_prob:0.5}) #神经元输出保持不变的概率 keep_prob 为0.5

print("test accuracy %g" %accuracy.eval(session = sess,
      feed_dict = {x:mnist.test.images, y_:mnist.test.labels,
                   keep_prob:1.0})) #神经元输出保持不变的概率 keep_prob 为 1,即不变,一直保持输出

end = time.clock() #计算程序结束时间
print("running time is %g s") % (end-start)

参考

  1. 深入MNIST
  2. 学习TensorFlow的第三天
  3. tensorflow官方API - tf.truncated_normal
  4. tensorflow官方API - tf.nn.conv2d
  5. tensorflow官方API - tf.nn.max_pool
  6. tensorflow官方API - tf.nn.dropout
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容