elasticjob-lite源码解析

写在前面

elasticjob是当当开源的分布式定时任务调度中间件,目前在github上有6k+的star。elasticjob有两种模式:lite模式和cloud模式,本文只是想探究主流分布式定时任务调度中间件的实现原理,因此只解析较为简单的lite模式。

不知道大家有没有想过一个单机定时任务是怎么去驱动的?我们很容易想到jdk的ScheduledExecutorService,它的原理就是将任务丢进按照执行时间排序的队列,然后线程池中的线程不断扫描最近的任务,如果任务已经到了执行时间,取出并执行任务即可。那还有没有其他方式呢?是不是也可以把任务存储在非本地内存上,存在本地文件或者redis zetset或者db,然后也是通过线程不断扫描取出任务执行,这样做能够有效避免本地内存任务数据的丢失。或者也可以通过更好的数据结构如时间轮存储任务数据,这样做能够有效减少任务的扫描范围,提高执行效率。

理解了这一单机定时任务的实现原理后,对于分布式的定时任务就很容易理解了,需要解决的就是如何跟执行同一任务的集群协调、如何获取分布式任务、如何将分布式任务分片"降级"成单机任务罢了。重点已经不是最后的单机任务执行,而是集群的任务协调处理方式。

elasticjob的分布式任务的集群协调通过成熟的分布式协调服务zookeeper来实现,而单机定时任务通过成熟的定时任务框架quartz来实现。elasticjob的架构图如下。

elasticjob-lite架构图

job的初始化

下面开始源码解析,ScheduleJobBootstrap是elasticjob的启动器,JobScheduler的构造方法拥有三个必选的入参:CoordinatorRegistryCenter协调中心、ElasticJob自定义任务处理器、JobConfiguration任务配置,一个可选入参:ElasticJobListener任务监听器。然后调用schedule方法,进而调用jobScheduler.getJobScheduleController().scheduleJob进行定时任务的调度。

    public ScheduleJobBootstrap(final CoordinatorRegistryCenter regCenter, final ElasticJob elasticJob, final JobConfiguration jobConfig, final ElasticJobListener... elasticJobListeners) {
        jobScheduler = new JobScheduler(regCenter, elasticJob, jobConfig, elasticJobListeners);
    }

    public void schedule() {
        Preconditions.checkArgument(!Strings.isNullOrEmpty(jobScheduler.getJobConfig().getCron()), "Cron can not be empty.");
        jobScheduler.getJobScheduleController().scheduleJob(jobScheduler.getJobConfig().getCron());
    }

进入JobScheduler的构造方法,主要有5种类型的方法:生成SetUpFacade、SchedulerFacade、LiteJobFacade,生成ElasticJobExecutor,调用setUpFacade.setUpJobConfiguration初始化配置,调用setGuaranteeServiceForElasticJobListeners为listener设置GuaranteeService,createJobScheduleController完成收尾,接下来一个个分析这些方法。

    public JobScheduler(final CoordinatorRegistryCenter regCenter, final ElasticJob elasticJob, final JobConfiguration jobConfig, final TracingConfiguration<?> tracingConfig,
                        final ElasticJobListener... elasticJobListeners) {
        this.regCenter = regCenter;
        this.elasticJob = elasticJob;
        elasticJobType = null;
        this.elasticJobListeners = Arrays.asList(elasticJobListeners);
        setUpFacade = new SetUpFacade(regCenter, jobConfig.getJobName(), this.elasticJobListeners);
        schedulerFacade = new SchedulerFacade(regCenter, jobConfig.getJobName());
        jobFacade = new LiteJobFacade(regCenter, jobConfig.getJobName(), this.elasticJobListeners, tracingConfig);
        jobExecutor = null == elasticJob ? new ElasticJobExecutor(elasticJobType, jobConfig, jobFacade) : new ElasticJobExecutor(elasticJob, jobConfig, jobFacade);
        String jobClassName = JobClassNameProviderFactory.getProvider().getJobClassName(elasticJob);
        this.jobConfig = setUpFacade.setUpJobConfiguration(jobClassName, jobConfig);
        setGuaranteeServiceForElasticJobListeners(regCenter, this.elasticJobListeners);
        jobScheduleController = createJobScheduleController();
    }

生成SetUpFacade、SchedulerFacade、LiteJobFacade,这三个Facade都是对regCenter的封装,可以向zookeeper进行增删改查,先不细说。

public SetUpFacade(final CoordinatorRegistryCenter regCenter, final String jobName, final List<ElasticJobListener> elasticJobListeners) {
        configService = new ConfigurationService(regCenter, jobName);
        leaderService = new LeaderService(regCenter, jobName);
        serverService = new ServerService(regCenter, jobName);
        instanceService = new InstanceService(regCenter, jobName);
        shardingService = new ShardingService(regCenter, jobName);
        reconcileService = new ReconcileService(regCenter, jobName);
        listenerManager = new ListenerManager(regCenter, jobName, elasticJobListeners);
    }

public SchedulerFacade(final CoordinatorRegistryCenter regCenter, final String jobName) {
        this.jobName = jobName;
        leaderService = new LeaderService(regCenter, jobName);
        shardingService = new ShardingService(regCenter, jobName);
        executionService = new ExecutionService(regCenter, jobName);
        reconcileService = new ReconcileService(regCenter, jobName);
    }

  public LiteJobFacade(final CoordinatorRegistryCenter regCenter, final String jobName, final List<ElasticJobListener> elasticJobListeners, final TracingConfiguration tracingConfig) {
        configService = new ConfigurationService(regCenter, jobName);
        shardingService = new ShardingService(regCenter, jobName);
        executionContextService = new ExecutionContextService(regCenter, jobName);
        executionService = new ExecutionService(regCenter, jobName);
        failoverService = new FailoverService(regCenter, jobName);
        this.elasticJobListeners = elasticJobListeners;
        this.jobEventBus = null == tracingConfig ? new JobEventBus() : new JobEventBus(tracingConfig);
    }

生成ElasticJobExecutor,对elasticJob、jobConfig、jobFacade进行赋值,通过JobItemExecutorFactory.getExecutor获取到jobItemExecutor,JobExecutorServiceHandlerFactory.getHandler(jobConfig.getJobExecutorServiceHandlerType()).createExecutorService获取到executorService,JobErrorHandlerFactory.getHandler获取到jobErrorHandler,对itemErrorMessages进行赋值。

   public ElasticJobExecutor(final ElasticJob elasticJob, final JobConfiguration jobConfig, final JobFacade jobFacade) {
        this(elasticJob, jobConfig, jobFacade, JobItemExecutorFactory.getExecutor(elasticJob.getClass()));
    }

    private ElasticJobExecutor(final ElasticJob elasticJob, final JobConfiguration jobConfig, final JobFacade jobFacade, final JobItemExecutor jobItemExecutor) {
        this.elasticJob = elasticJob;
        this.jobConfig = jobConfig;
        this.jobFacade = jobFacade;
        this.jobItemExecutor = jobItemExecutor;
        executorService = JobExecutorServiceHandlerFactory.getHandler(jobConfig.getJobExecutorServiceHandlerType()).createExecutorService(jobConfig.getJobName());
        jobErrorHandler = JobErrorHandlerFactory.getHandler(jobConfig.getJobErrorHandlerType());
        itemErrorMessages = new ConcurrentHashMap<>(jobConfig.getShardingTotalCount(), 1);
    }

setUpFacade.setUpJobConfiguration会判断是否config路径还没有数据并且需要覆盖配置,如果是就将config写入zookeeper的/jobName/config的路径中,并且写入jobClassName到/jobName的路径中。否则调用load从本地缓存或者zookeeper的config路径读取配置。

    public JobConfiguration setUpJobConfiguration(final String jobClassName, final JobConfiguration jobConfig) {
        return configService.setUpJobConfiguration(jobClassName, jobConfig);
    }

    public JobConfiguration setUpJobConfiguration(final String jobClassName, final JobConfiguration jobConfig) {
        checkConflictJob(jobClassName, jobConfig);
        if (!jobNodeStorage.isJobNodeExisted(ConfigurationNode.ROOT) || jobConfig.isOverwrite()) {
            jobNodeStorage.replaceJobNode(ConfigurationNode.ROOT, YamlEngine.marshal(JobConfigurationPOJO.fromJobConfiguration(jobConfig)));
            jobNodeStorage.replaceJobRootNode(jobClassName);
            return jobConfig;
        }
        return load(false);
    }

    public JobConfiguration load(final boolean fromCache) {
        String result;
        if (fromCache) {
            result = jobNodeStorage.getJobNodeData(ConfigurationNode.ROOT);
            if (null == result) {
                result = jobNodeStorage.getJobNodeDataDirectly(ConfigurationNode.ROOT);
            }
        } else {
            result = jobNodeStorage.getJobNodeDataDirectly(ConfigurationNode.ROOT);
        }
        return YamlEngine.unmarshal(result, JobConfigurationPOJO.class).toJobConfiguration();
    }

setGuaranteeServiceForElasticJobListeners将生成GuaranteeService设置到listener中,不再细说。

    private void setGuaranteeServiceForElasticJobListeners(final CoordinatorRegistryCenter regCenter, final List<ElasticJobListener> elasticJobListeners) {
        GuaranteeService guaranteeService = new GuaranteeService(regCenter, jobConfig.getJobName());
        for (ElasticJobListener each : elasticJobListeners) {
            if (each instanceof AbstractDistributeOnceElasticJobListener) {
                ((AbstractDistributeOnceElasticJobListener) each).setGuaranteeService(guaranteeService);
            }
        }
    }

createJobScheduleController是重头戏,首先会创建调用createScheduler、createJobDetail、 getJobConfig().getJobName()获取入参生成JobScheduleController,然后调用 JobRegistry.getInstance().registerJob向本地的map注册JobScheduleController,然后调用registerStartUpInfo注册启动信息。

    private JobScheduleController createJobScheduleController() {
        JobScheduleController result = new JobScheduleController(createScheduler(), createJobDetail(), getJobConfig().getJobName());
        JobRegistry.getInstance().registerJob(getJobConfig().getJobName(), result);
        registerStartUpInfo();
        return result;
    }

先来看JobScheduleController的生成,入参是quartz的Scheduler、JobDetail、triggerIdentity。
Scheduler通过StdSchedulerFactory并且注入一些quartz的配置参数,然后调用其getScheduler获取,最后注册listener到Scheduler,来处理错过调度到的任务。
JobDetail通过注入jobExecutor来生成,使得任务执行时会调用jobExecutor的execute方法。
triggerIdentity即是jobName。

 private Scheduler createScheduler() {
        Scheduler result;
        try {
            StdSchedulerFactory factory = new StdSchedulerFactory();
            factory.initialize(getQuartzProps());
            result = factory.getScheduler();
            result.getListenerManager().addTriggerListener(schedulerFacade.newJobTriggerListener());
        } catch (final SchedulerException ex) {
            throw new JobSystemException(ex);
        }
        return result;
    }
    
    private Properties getQuartzProps() {
        Properties result = new Properties();
        result.put("org.quartz.threadPool.class", SimpleThreadPool.class.getName());
        result.put("org.quartz.threadPool.threadCount", "1");
        result.put("org.quartz.scheduler.instanceName", getJobConfig().getJobName());
        result.put("org.quartz.jobStore.misfireThreshold", "1");
        result.put("org.quartz.plugin.shutdownhook.class", JobShutdownHookPlugin.class.getName());
        result.put("org.quartz.plugin.shutdownhook.cleanShutdown", Boolean.TRUE.toString());
        return result;
    }
    
    private JobDetail createJobDetail() {
        JobDetail result = JobBuilder.newJob(LiteJob.class).withIdentity(getJobConfig().getJobName()).build();
        result.getJobDataMap().put(JOB_EXECUTOR_DATA_MAP_KEY, jobExecutor);
        return result;
    }

接下来是registerStartUpInfo,分别会调用JobRegistry的registerRegistryCenter、addJobInstance、setCurrentShardingTotalCount,最后调用setUpFacade.registerStartUpInfo。

    private void registerStartUpInfo() {
        JobRegistry.getInstance().registerRegistryCenter(jobConfig.getJobName(), regCenter);
        JobRegistry.getInstance().addJobInstance(jobConfig.getJobName(), new JobInstance());
        JobRegistry.getInstance().setCurrentShardingTotalCount(jobConfig.getJobName(), jobConfig.getShardingTotalCount());
        setUpFacade.registerStartUpInfo(!jobConfig.isDisabled());
    }

JobRegistry的registerRegistryCenter、addJobInstance、setCurrentShardingTotalCount三个是将regCenter、jobInstance、currentShardingTotalCount进行缓存,并且初始化对/jobName路径下数据的缓存。

    public void registerRegistryCenter(final String jobName, final CoordinatorRegistryCenter regCenter) {
        regCenterMap.put(jobName, regCenter);
        regCenter.addCacheData("/" + jobName);
    }

    public void addJobInstance(final String jobName, final JobInstance jobInstance) {
        jobInstanceMap.put(jobName, jobInstance);
    }

    public void setCurrentShardingTotalCount(final String jobName, final int currentShardingTotalCount) {
        currentShardingTotalCountMap.put(jobName, currentShardingTotalCount);
    }

setUpFacade.registerStartUpInfo是最终的初始化方法,里面的方法很重要,对每一个都分析一下。

    public void registerStartUpInfo(final boolean enabled) {
        listenerManager.startAllListeners();
        leaderService.electLeader();
        serverService.persistOnline(enabled);
        instanceService.persistOnline();
        shardingService.setReshardingFlag();
        if (!reconcileService.isRunning()) {
            reconcileService.startAsync();
        }
    }

listenerManager.startAllListeners会启动所有对zookeeper路径数据变化的listener。

 public void startAllListeners() {
    electionListenerManager.start();
    shardingListenerManager.start();
    failoverListenerManager.start();
    monitorExecutionListenerManager.start();
    shutdownListenerManager.start();
    triggerListenerManager.start();
    rescheduleListenerManager.start();
    guaranteeListenerManager.start();
    jobNodeStorage.addConnectionStateListener(regCenterConnectionStateListener);
    }

electionListenerManager监听以下事件:
1.当leader节点被删除或者leader节点不存在时,触发leaderService.electLeader选举。
2.如果本身节点被置为不可用并且本身节点是leader,则移除本身节点的leader节点,以此来触发leaderService.electLeader选举。

    class LeaderElectionJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (!JobRegistry.getInstance().isShutdown(jobName) && (isActiveElection(path, data) || isPassiveElection(path, eventType))) {
                leaderService.electLeader();
            }
        }
        
        private boolean isActiveElection(final String path, final String data) {
            return !leaderService.hasLeader() && isLocalServerEnabled(path, data);
        }
        
        private boolean isPassiveElection(final String path, final Type eventType) {
            JobInstance jobInstance = JobRegistry.getInstance().getJobInstance(jobName);
            return !Objects.isNull(jobInstance) && isLeaderCrashed(path, eventType) && serverService.isAvailableServer(jobInstance.getIp());
        }
        
        private boolean isLeaderCrashed(final String path, final Type eventType) {
            return leaderNode.isLeaderInstancePath(path) && Type.NODE_DELETED == eventType;
        }
        
        private boolean isLocalServerEnabled(final String path, final String data) {
            return serverNode.isLocalServerPath(path) && !ServerStatus.DISABLED.name().equals(data);
        }
    }

    class LeaderAbdicationJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (leaderService.isLeader() && isLocalServerDisabled(path, data)) {
                leaderService.removeLeader();
            }
        }
        
        private boolean isLocalServerDisabled(final String path, final String data) {
            return serverNode.isLocalServerPath(path) && ServerStatus.DISABLED.name().equals(data);
        }
    }

shardingListenerManager监听以下事件:
1.配置节点中的shardingTotalCount发生改变,调用shardingService.setReshardingFlag,强制任务执行时重新分配分片。
2.server或者instance节点发生改变,调用shardingService.setReshardingFlag,强制任务执行时重新分配分片。

    class ShardingTotalCountChangedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (configNode.isConfigPath(path) && 0 != JobRegistry.getInstance().getCurrentShardingTotalCount(jobName)) {
                int newShardingTotalCount = YamlEngine.unmarshal(data, JobConfigurationPOJO.class).toJobConfiguration().getShardingTotalCount();
                if (newShardingTotalCount != JobRegistry.getInstance().getCurrentShardingTotalCount(jobName)) {
                    shardingService.setReshardingFlag();
                    JobRegistry.getInstance().setCurrentShardingTotalCount(jobName, newShardingTotalCount);
                }
            }
        }
    }
    
    class ListenServersChangedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (!JobRegistry.getInstance().isShutdown(jobName) && (isInstanceChange(eventType, path) || isServerChange(path))) {
                shardingService.setReshardingFlag();
            }
        }
        
        private boolean isInstanceChange(final Type eventType, final String path) {
            return instanceNode.isInstancePath(path) && Type.NODE_CHANGED != eventType;
        }
        
        private boolean isServerChange(final String path) {
            return serverNode.isServerPath(path);
        }
    }

failoverListenerManager监听以下事件:
1.instance节点发生下线,将其拥有的失效转移任务再次触发失效转移到其他节点执行。
2.配置节点中的isFailover发生改变,若不需要失效转移,则直接清除现有的失效转移任务。

class JobCrashedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (!JobRegistry.getInstance().isShutdown(jobName) && isFailoverEnabled() && Type.NODE_DELETED == eventType && instanceNode.isInstancePath(path)) {
                String jobInstanceId = path.substring(instanceNode.getInstanceFullPath().length() + 1);
                if (jobInstanceId.equals(JobRegistry.getInstance().getJobInstance(jobName).getJobInstanceId())) {
                    return;
                }
                List<Integer> failoverItems = failoverService.getFailoverItems(jobInstanceId);
                if (!failoverItems.isEmpty()) {
                    for (int each : failoverItems) {
                        failoverService.setCrashedFailoverFlag(each);
                        failoverService.failoverIfNecessary();
                    }
                } else {
                    for (int each : shardingService.getShardingItems(jobInstanceId)) {
                        failoverService.setCrashedFailoverFlag(each);
                        failoverService.failoverIfNecessary();
                    }
                }
            }
        }
    }
    
    class FailoverSettingsChangedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (configNode.isConfigPath(path) && Type.NODE_CHANGED == eventType && !YamlEngine.unmarshal(data, JobConfigurationPOJO.class).toJobConfiguration().isFailover()) {
                failoverService.removeFailoverInfo();
            }
        }
    }

monitorExecutionListenerManager监听以下事件:
1.配置节点中的isMonitorExecution发生改变,若不需要提醒执行信息,则直接清除现有的显示执行的节点。

    class MonitorExecutionSettingsChangedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (configNode.isConfigPath(path) && Type.NODE_CHANGED == eventType && !YamlEngine.unmarshal(data, JobConfigurationPOJO.class).toJobConfiguration().isMonitorExecution()) {
                executionService.clearAllRunningInfo();
            }
        }
    }

shutdownListenerManager监听以下事件:
1.本身的instance节点被删除,需要调用schedulerFacade.shutdownInstance关闭掉本身节点的定时任务。

    class InstanceShutdownStatusJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (!JobRegistry.getInstance().isShutdown(jobName) && !JobRegistry.getInstance().getJobScheduleController(jobName).isPaused()
                    && isRemoveInstance(path, eventType) && !isReconnectedRegistryCenter()) {
                schedulerFacade.shutdownInstance();
            }
        }
        
        private boolean isRemoveInstance(final String path, final Type eventType) {
            return instanceNode.isLocalInstancePath(path) && Type.NODE_DELETED == eventType;
        }
        
        private boolean isReconnectedRegistryCenter() {
            return instanceService.isLocalJobInstanceExisted();
        }
    }

triggerListenerManager监听以下事件:
1.出现指定本身节点的trigger节点,将清除trigger节点,然后调用triggerJob立刻执行一次任务。

    class JobTriggerStatusJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (!InstanceOperation.TRIGGER.name().equals(data) || !instanceNode.isLocalInstancePath(path) || Type.NODE_CHANGED != eventType) {
                return;
            }
            instanceService.clearTriggerFlag();
            if (!JobRegistry.getInstance().isShutdown(jobName) && !JobRegistry.getInstance().isJobRunning(jobName)) {
                // TODO At present, it cannot be triggered when the job is running, and it will be changed to a stacked trigger in the future.
                JobRegistry.getInstance().getJobScheduleController(jobName).triggerJob();
            }
        }
    }

rescheduleListenerManager监听以下事件:
1.配置节点中的cron发生改变,则调用rescheduleJob重新调度定时任务。

class CronSettingAndJobEventChangedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (configNode.isConfigPath(path) && Type.NODE_CHANGED == eventType && !JobRegistry.getInstance().isShutdown(jobName)) {
                JobRegistry.getInstance().getJobScheduleController(jobName).rescheduleJob(YamlEngine.unmarshal(data, JobConfigurationPOJO.class).toJobConfiguration().getCron());
            }
        }
    }

guaranteeListenerManager监听以下事件:
1.start节点发生改变,将调用listener的notifyWaitingTaskStart通知任务启动。
2.complete发生改变,将调用listener的notifyWaitingTaskComplete通知任务完成。

   class StartedNodeRemovedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (Type.NODE_DELETED == eventType && guaranteeNode.isStartedRootNode(path)) {
                for (ElasticJobListener each : elasticJobListeners) {
                    if (each instanceof AbstractDistributeOnceElasticJobListener) {
                        ((AbstractDistributeOnceElasticJobListener) each).notifyWaitingTaskStart();
                    }
                }
            }
        }
    }
    
    class CompletedNodeRemovedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (Type.NODE_DELETED == eventType && guaranteeNode.isCompletedRootNode(path)) {
                for (ElasticJobListener each : elasticJobListeners) {
                    if (each instanceof AbstractDistributeOnceElasticJobListener) {
                        ((AbstractDistributeOnceElasticJobListener) each).notifyWaitingTaskComplete();
                    }
                }
            }
        }
    }

regCenterConnectionStateListener监听的是对zookeeper的连接状态,若连接出现挂起或者丢失状态,则暂停任务,如果重新连接上,则重新写入server、instance本身节点到zookeeper,清除本身节点的运行节点,然后重新调度定时任务。

  @Override
    public void stateChanged(final CuratorFramework client, final ConnectionState newState) {
        if (JobRegistry.getInstance().isShutdown(jobName)) {
            return;
        }
        JobScheduleController jobScheduleController = JobRegistry.getInstance().getJobScheduleController(jobName);
        if (ConnectionState.SUSPENDED == newState || ConnectionState.LOST == newState) {
            jobScheduleController.pauseJob();
        } else if (ConnectionState.RECONNECTED == newState) {
            serverService.persistOnline(serverService.isEnableServer(JobRegistry.getInstance().getJobInstance(jobName).getIp()));
            instanceService.persistOnline();
            executionService.clearRunningInfo(shardingService.getLocalShardingItems());
            jobScheduleController.resumeJob();
        }
    }

完成所有listener的初始化后,将调用leaderService.electLeader开始选举,将使用zookeeper分布式锁的机制,所有节点都往同一路径下创建顺序节点,只有获取到最小序号的节点会执行LeaderElectionExecutionCallback的execute方法,将本身节点的信息写入leader节点,宣布选举成功。因此后续其他节点再进入LeaderElectionExecutionCallback的execute方法时,发现leader节点拥有数据,自己只能成为follower结束选举流程。

  public void executeInLeader(final String latchNode, final LeaderExecutionCallback callback) {
        try (LeaderLatch latch = new LeaderLatch(getClient(), jobNodePath.getFullPath(latchNode))) {
            latch.start();
            latch.await();
            callback.execute();
        //CHECKSTYLE:OFF
        } catch (final Exception ex) {
        //CHECKSTYLE:ON
            handleException(ex);
        }
    }

    public void electLeader() {
        log.debug("Elect a new leader now.");
        jobNodeStorage.executeInLeader(LeaderNode.LATCH, new LeaderElectionExecutionCallback());
        log.debug("Leader election completed.");
    }

   @RequiredArgsConstructor
    class LeaderElectionExecutionCallback implements LeaderExecutionCallback {
        
        @Override
        public void execute() {
            if (!hasLeader()) {
                jobNodeStorage.fillEphemeralJobNode(LeaderNode.INSTANCE, JobRegistry.getInstance().getJobInstance(jobName).getJobInstanceId());
            }
        }
    }

由上文讲到,listener基本上都是围绕server、instance节点来进行处理,接下来serverService.persistOnline和instanceService.persistOnline就是创建本身节点的server、instance节点。

    public void persistOnline(final boolean enabled) {
        if (!JobRegistry.getInstance().isShutdown(jobName)) {
            jobNodeStorage.fillJobNode(serverNode.getServerNode(JobRegistry.getInstance().getJobInstance(jobName).getIp()), enabled ? ServerStatus.ENABLED.name() : ServerStatus.DISABLED.name());
        }
    }

  public void persistOnline() {
        jobNodeStorage.fillEphemeralJobNode(instanceNode.getLocalInstanceNode(), "");
    }

因为是初始化,还是需要调用shardingService.setReshardingFlag,强制定时任务执行前进行分片。

   public void setReshardingFlag() {
        jobNodeStorage.createJobNodeIfNeeded(ShardingNode.NECESSARY);
    }

最后是reconcileService.startAsync,会定时检测leader状态触发重新选举和触发重新分片,避免完全依赖listener处理核心逻辑,使得系统拥有一个自检测修复的功能。

    @Override
    protected void runOneIteration() {
        int reconcileIntervalMinutes = configService.load(true).getReconcileIntervalMinutes();
        if (reconcileIntervalMinutes > 0 && (System.currentTimeMillis() - lastReconcileTime >= reconcileIntervalMinutes * 60 * 1000)) {
            lastReconcileTime = System.currentTimeMillis();
            if (leaderService.isLeaderUntilBlock() && !shardingService.isNeedSharding() && shardingService.hasShardingInfoInOfflineServers()) {
                log.warn("Elastic Job: job status node has inconsistent value,start reconciling...");
                shardingService.setReshardingFlag();
            }
        }
    }
    
    @Override
    protected Scheduler scheduler() {
        return Scheduler.newFixedDelaySchedule(0, 1, TimeUnit.MINUTES);
    }

job的执行

来到job的执行流程解析,在定时任务执行时,会调用到ElasticJobExecutor的execute方法,下面会一步步分析。

    public void execute() {
        try {
            jobFacade.checkJobExecutionEnvironment();
        } catch (final JobExecutionEnvironmentException cause) {
            jobErrorHandler.handleException(jobConfig.getJobName(), cause);
        }
        ShardingContexts shardingContexts = jobFacade.getShardingContexts();
        jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_STAGING, String.format("Job '%s' execute begin.", jobConfig.getJobName()));
        if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
                    "Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobConfig.getJobName(),
                    shardingContexts.getShardingItemParameters().keySet()));
            return;
        }
        try {
            jobFacade.beforeJobExecuted(shardingContexts);
            //CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            //CHECKSTYLE:ON
            jobErrorHandler.handleException(jobConfig.getJobName(), cause);
        }
        execute(shardingContexts, ExecutionSource.NORMAL_TRIGGER);
        while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
            jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
            execute(shardingContexts, ExecutionSource.MISFIRE);
        }
        jobFacade.failoverIfNecessary();
        try {
            jobFacade.afterJobExecuted(shardingContexts);
            //CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            //CHECKSTYLE:ON
            jobErrorHandler.handleException(jobConfig.getJobName(), cause);
        }
    }

jobFacade.checkJobExecutionEnvironment最终会调用到ConfigurationService的checkMaxTimeDiffSecondsTolerable方法,原理是通过在zookeeper写入一个节点,然后获取其写入时间,然后与本地时间对比获取时间差,若时间差大于最大容忍的时间差则抛出错误,不执行任务。

   public void checkMaxTimeDiffSecondsTolerable() throws JobExecutionEnvironmentException {
        int maxTimeDiffSeconds = load(true).getMaxTimeDiffSeconds();
        if (-1 == maxTimeDiffSeconds) {
            return;
        }
        long timeDiff = Math.abs(timeService.getCurrentMillis() - jobNodeStorage.getRegistryCenterTime());
        if (timeDiff > maxTimeDiffSeconds * 1000L) {
            throw new JobExecutionEnvironmentException(
                    "Time different between job server and register center exceed '%s' seconds, max time different is '%s' seconds.", timeDiff / 1000, maxTimeDiffSeconds);
        }
    }

jobFacade.getShardingContexts是获取ShardingContexts的方法,主要是获取到具体的分片items,然后将jobConfig和分片items结合生成ShardingContexts返回。如果是支持failover则返回failover的分片,否则需要调用shardingService.shardingIfNecessary检测是否需要重新分片,然后再获取到分到本节点的分片返回。

@Override
    public ShardingContexts getShardingContexts() {
        boolean isFailover = configService.load(true).isFailover();
        if (isFailover) {
            List<Integer> failoverShardingItems = failoverService.getLocalFailoverItems();
            if (!failoverShardingItems.isEmpty()) {
                return executionContextService.getJobShardingContext(failoverShardingItems);
            }
        }
        shardingService.shardingIfNecessary();
        List<Integer> shardingItems = shardingService.getLocalShardingItems();
        if (isFailover) {
            shardingItems.removeAll(failoverService.getLocalTakeOffItems());
        }
        shardingItems.removeAll(executionService.getDisabledItems(shardingItems));
        return executionContextService.getJobShardingContext(shardingItems);
    }

    public ShardingContexts getJobShardingContext(final List<Integer> shardingItems) {
        JobConfiguration jobConfig = configService.load(false);
        removeRunningIfMonitorExecution(jobConfig.isMonitorExecution(), shardingItems);
        if (shardingItems.isEmpty()) {
            return new ShardingContexts(buildTaskId(jobConfig, shardingItems), jobConfig.getJobName(), jobConfig.getShardingTotalCount(), 
                    jobConfig.getJobParameter(), Collections.emptyMap());
        }
        Map<Integer, String> shardingItemParameterMap = new ShardingItemParameters(jobConfig.getShardingItemParameters()).getMap();
        return new ShardingContexts(buildTaskId(jobConfig, shardingItems), jobConfig.getJobName(), jobConfig.getShardingTotalCount(), 
                jobConfig.getJobParameter(), getAssignedShardingItemParameterMap(shardingItems, shardingItemParameterMap));
    }

shardingService.shardingIfNecessary是重新分片的方法,上文已经说到,如果需要分片,则会在zookeeper加上shard目录加上necessary节点。如果检测到需要重新分片,follower会等待重新分片完成,leader则执行重新分片逻辑,需要先等到正在执行的分片item完成,然后标记重新分片为进行中,调用resetShardingInfo将shard节点调整为正确数量(扩缩容),然后调用jobShardingStrategy的sharding方法,获取到分片结果,最终调用jobNodeStorage.executeInTransaction将分片结果写入到zookeeper。

    public void shardingIfNecessary() {
        List<JobInstance> availableJobInstances = instanceService.getAvailableJobInstances();
        if (!isNeedSharding() || availableJobInstances.isEmpty()) {
            return;
        }
        if (!leaderService.isLeaderUntilBlock()) {
            blockUntilShardingCompleted();
            return;
        }
        waitingOtherShardingItemCompleted();
        JobConfiguration jobConfig = configService.load(false);
        int shardingTotalCount = jobConfig.getShardingTotalCount();
        log.debug("Job '{}' sharding begin.", jobName);
        jobNodeStorage.fillEphemeralJobNode(ShardingNode.PROCESSING, "");
        resetShardingInfo(shardingTotalCount);
        JobShardingStrategy jobShardingStrategy = JobShardingStrategyFactory.getStrategy(jobConfig.getJobShardingStrategyType());
        jobNodeStorage.executeInTransaction(new PersistShardingInfoTransactionExecutionCallback(jobShardingStrategy.sharding(availableJobInstances, jobName, shardingTotalCount)));
        log.debug("Job '{}' sharding complete.", jobName);
    }

继续回到主流程,拿到ShardingContexts后就调用execute方法执行,忽略一些前后钩子方法的执行,其实就是根据分片号执行任务,如果是只有1个分片,则直接在原线程执行。否则将丢进线程池,然后使用CountDownLatch等待所有任务执行完成返回。

    private void execute(final ShardingContexts shardingContexts, final ExecutionSource executionSource) {
        if (shardingContexts.getShardingItemParameters().isEmpty()) {
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobConfig.getJobName()));
            return;
        }
        jobFacade.registerJobBegin(shardingContexts);
        String taskId = shardingContexts.getTaskId();
        jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
        try {
            process(shardingContexts, executionSource);
        } finally {
            // TODO Consider increasing the status of job failure, and how to handle the overall loop of job failure
            jobFacade.registerJobCompleted(shardingContexts);
            if (itemErrorMessages.isEmpty()) {
                jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
            } else {
                jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
            }
        }
    }

private void process(final ShardingContexts shardingContexts, final ExecutionSource executionSource) {
        Collection<Integer> items = shardingContexts.getShardingItemParameters().keySet();
        if (1 == items.size()) {
            int item = shardingContexts.getShardingItemParameters().keySet().iterator().next();
            JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(IpUtils.getHostName(), IpUtils.getIp(), shardingContexts.getTaskId(), jobConfig.getJobName(), executionSource, item);
            process(shardingContexts, item, jobExecutionEvent);
            return;
        }
        CountDownLatch latch = new CountDownLatch(items.size());
        for (int each : items) {
            JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(IpUtils.getHostName(), IpUtils.getIp(), shardingContexts.getTaskId(), jobConfig.getJobName(), executionSource, each);
            if (executorService.isShutdown()) {
                return;
            }
            executorService.submit(() -> {
                try {
                    process(shardingContexts, each, jobExecutionEvent);
                } finally {
                    latch.countDown();
                }
            });
        }
        try {
            latch.await();
        } catch (final InterruptedException ex) {
            Thread.currentThread().interrupt();
        }
    }

   private void process(final ShardingContexts shardingContexts, final int item, final JobExecutionEvent startEvent) {
        jobFacade.postJobExecutionEvent(startEvent);
        log.trace("Job '{}' executing, item is: '{}'.", jobConfig.getJobName(), item);
        JobExecutionEvent completeEvent;
        try {
            jobItemExecutor.process(elasticJob, jobConfig, jobFacade, shardingContexts.createShardingContext(item));
            completeEvent = startEvent.executionSuccess();
            log.trace("Job '{}' executed, item is: '{}'.", jobConfig.getJobName(), item);
            jobFacade.postJobExecutionEvent(completeEvent);
            // CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            // CHECKSTYLE:ON
            completeEvent = startEvent.executionFailure(ExceptionUtils.transform(cause));
            jobFacade.postJobExecutionEvent(completeEvent);
            itemErrorMessages.put(item, ExceptionUtils.transform(cause));
            jobErrorHandler.handleException(jobConfig.getJobName(), cause);
        }
    }

下面来分析一下elasticjob三种job形态。
SimpleJobExecutor直接调用用户定义的elasticJob的execute执行即可。

    @Override
    public void process(final SimpleJob elasticJob, final JobConfiguration jobConfig, final JobFacade jobFacade, final ShardingContext shardingContext) {
        elasticJob.execute(shardingContext);
    }

ScriptJobExecutor将分片参数转化成命令行,调用底层的命令行执行方法即可。

    @Override
    public void process(final ElasticJob elasticJob, final JobConfiguration jobConfig, final JobFacade jobFacade, final ShardingContext shardingContext) {
        CommandLine commandLine = CommandLine.parse(getScriptCommandLine(jobConfig.getProps()));
        commandLine.addArgument(GsonFactory.getGson().toJson(shardingContext), false);
        try {
            new DefaultExecutor().execute(commandLine);
        } catch (final IOException ex) {
            throw new JobSystemException("Execute script failure.", ex);
        }
    }
    
    private String getScriptCommandLine(final Properties props) {
        String result = props.getProperty(ScriptJobProperties.SCRIPT_KEY);
        if (Strings.isNullOrEmpty(result)) {
            throw new JobConfigurationException("Cannot find script command line, job is not executed.");
        }
        return result;
    }

DataflowJobExecutor会根据配置选择对应的流式处理模式,如果是oneOffExecute,则调用一次fetchData拉取数据,再调用一次processData处理数据就结束。如果是streamingExecute,则会不断进行拉取处理的循环,直到拉取的数据为空。

 @Override
    public void process(final DataflowJob elasticJob, final JobConfiguration jobConfig, final JobFacade jobFacade, final ShardingContext shardingContext) {
        if (Boolean.parseBoolean(jobConfig.getProps().getOrDefault(DataflowJobProperties.STREAM_PROCESS_KEY, false).toString())) {
            streamingExecute(elasticJob, jobConfig, jobFacade, shardingContext);
        } else {
            oneOffExecute(elasticJob, shardingContext);
        }
    }
    
    private void streamingExecute(final DataflowJob elasticJob, final JobConfiguration jobConfig, final JobFacade jobFacade, final ShardingContext shardingContext) {
        List<Object> data = fetchData(elasticJob, shardingContext);
        while (null != data && !data.isEmpty()) {
            processData(elasticJob, shardingContext, data);
            if (!isEligibleForJobRunning(jobConfig, jobFacade)) {
                break;
            }
            data = fetchData(elasticJob, shardingContext);
        }
    }
    
    private boolean isEligibleForJobRunning(final JobConfiguration jobConfig, final JobFacade jobFacade) {
        return !jobFacade.isNeedSharding() && Boolean.parseBoolean(jobConfig.getProps().getOrDefault(DataflowJobProperties.STREAM_PROCESS_KEY, false).toString());
    }
    
    private void oneOffExecute(final DataflowJob elasticJob, final ShardingContext shardingContext) {
        List<Object> data = fetchData(elasticJob, shardingContext);
        if (null != data && !data.isEmpty()) {
            processData(elasticJob, shardingContext, data);
        }
    }
    
    @SuppressWarnings("unchecked")
    private List<Object> fetchData(final DataflowJob elasticJob, final ShardingContext shardingContext) {
        return elasticJob.fetchData(shardingContext);
    }
    
    @SuppressWarnings("unchecked")
    private void processData(final DataflowJob elasticJob, final ShardingContext shardingContext, final List<Object> data) {
        elasticJob.processData(shardingContext, data);
    }
    

继续主流程的错过调度的分片item处理,上文分析到本地的quartz是注册了错过调度listener,如果检测到错过调度,则向zookeeper注册错过调度节点。此时则是取出错过调度节点,然后执行。

       execute(shardingContexts, ExecutionSource.NORMAL_TRIGGER);
        while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
            jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
            execute(shardingContexts, ExecutionSource.MISFIRE);
        }

最后是jobFacade.failoverIfNecessary,也就是再一次取出failover的节点进行执行。

  @Override
    public void failoverIfNecessary() {
        if (configService.load(true).isFailover()) {
            failoverService.failoverIfNecessary();
        }
    }

   public void failoverIfNecessary() {
        if (needFailover()) {
            jobNodeStorage.executeInLeader(FailoverNode.LATCH, new FailoverLeaderExecutionCallback());
        }
    }

    private boolean needFailover() {
        return jobNodeStorage.isJobNodeExisted(FailoverNode.ITEMS_ROOT) && !jobNodeStorage.getJobNodeChildrenKeys(FailoverNode.ITEMS_ROOT).isEmpty()
                && !JobRegistry.getInstance().isJobRunning(jobName);
    }

       @Override
        public void execute() {
            if (JobRegistry.getInstance().isShutdown(jobName) || !needFailover()) {
                return;
            }
            int crashedItem = Integer.parseInt(jobNodeStorage.getJobNodeChildrenKeys(FailoverNode.ITEMS_ROOT).get(0));
            log.debug("Failover job '{}' begin, crashed item '{}'", jobName, crashedItem);
            jobNodeStorage.fillEphemeralJobNode(FailoverNode.getExecutionFailoverNode(crashedItem), JobRegistry.getInstance().getJobInstance(jobName).getJobInstanceId());
            jobNodeStorage.removeJobNodeIfExisted(FailoverNode.getItemsNode(crashedItem));
            // TODO Instead of using triggerJob, use executor for unified scheduling
            JobScheduleController jobScheduleController = JobRegistry.getInstance().getJobScheduleController(jobName);
            if (null != jobScheduleController) {
                jobScheduleController.triggerJob();
            }
        }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容