flink使用checkpoint等知识

链接:http://shiyanjun.cn/archives/1855.html
https://www.slideshare.net/FlinkForward/flink-forward-berlin-2017-tzuli-gordon-tai-managing-state-in-apache-flink(有关于状态的序列化)

开启

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(60000);
        env.setStateBackend(new FsStateBackend("hdfs://home/wangxiaotong/data/flink/checkpoints"));
        env.getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

上面调用enableExternalizedCheckpoints设置为ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION,表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint处理。上面代码配置了执行Checkpointing的时间间隔为1分钟。

保存多个Checkpoint

默认情况下,如果设置了Checkpoint选项,则Flink只保留最近成功生成的1个Checkpoint,而当Flink程序失败时,可以从最近的这个Checkpoint来进行恢复。但是,如果我们希望保留多个Checkpoint,并能够根据实际需要选择其中一个进行恢复,这样会更加灵活,比如,我们发现最近4个小时数据记录处理有问题,希望将整个状态还原到4小时之前。
Flink可以支持保留多个Checkpoint,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,指定最多需要保存Checkpoint的个数:
state.checkpoints.num-retained: 20
在HDFS的相应文件夹下面会产生多个checkpoint文件。

从Checkpoint进行恢复

如果Flink程序异常失败,或者最近一段时间内数据处理错误,我们可以将程序从某一个Checkpoint点,比如chk-860进行回放,执行如下命令:
bin/flink run -s hdfs://namenode01.td.com/flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-860/_metadata flink-app-jobs.jar
从上面我们可以看到,前面Flink Job的ID为582e17d2cc343e6c56255d111bae0191,所有的Checkpoint文件都在以Job ID为名称的目录里面,当Job停掉后,重新从某个Checkpoint点(chk-860)进行恢复时,重新生成Job ID(这里是11bbc5d9933e4ff7e25198a760e9792e),而对应的Checkpoint编号会从该次运行基于的编号继续连续生成:chk-861、chk-862、chk-863等等。

Flink Savepoint

Savepoint会在Flink Job之外存储自包含(self-contained)结构的Checkpoint,它使用Flink的Checkpointing机制来创建一个非增量的Snapshot,里面包含Streaming程序的状态,并将Checkpoint的数据存储到外部存储系统中。

Flink程序中包含两种状态数据,一种是用户定义的状态(User-defined State),他们是基于Flink的Transformation函数来创建或者修改得到的状态数据;另一种是系统状态(System State),他们是指作为Operator计算一部分的数据Buffer等状态数据,比如在使用Window Function时,在Window内部缓存Streaming数据记录。为了能够在创建Savepoint过程中,唯一识别对应的Operator的状态数据,Flink提供了API来为程序中每个Operator设置ID,这样可以在后续更新/升级程序的时候,可以在Savepoint数据中基于Operator ID来与对应的状态信息进行匹配,从而实现恢复。当然,如果我们不指定Operator ID,Flink也会我们自动生成对应的Operator状态ID。
而且,强烈建议手动为每个Operator设置ID,即使未来Flink应用程序可能会改动很大,比如替换原来的Operator实现、增加新的Operator、删除Operator等等,至少我们有可能与Savepoint中存储的Operator状态对应上。另外,保存的Savepoint状态数据,毕竟是基于当时程序及其内存数据结构生成的,所以如果未来Flink程序改动比较大,尤其是对应的需要操作的内存数据结构都变化了,可能根本就无法从原来旧的Savepoint正确地恢复。

下面,我们以Flink官网文档中给定的例子,来看下如何设置Operator ID,代码如下所示:

DataStream<String> stream = env.
  // Stateful source (e.g. Kafka) with ID
  .addSource(new StatefulSource())
  .uid("source-id") // ID for the source operator
  .shuffle()
  // Stateful mapper with ID
  .map(new StatefulMapper())
  .uid("mapper-id") // ID for the mapper
  // Stateless printing sink
  .print(); // Auto-generated ID

创建Savepoint

创建一个Savepoint,需要指定对应Savepoint目录,有两种方式来指定:
一种是,需要配置Savepoint的默认路径,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,设置Savepoint存储目录,例如如下所示:
state.savepoints.dir: hdfs://namenode01.td.com/flink-1.5.3/flink-savepoints
另一种是,在手动执行savepoint命令的时候,指定Savepoint存储目录,命令格式如下所示:

bin/flink savepoint :jobId [:targetDirectory]
例如,正在运行的Flink Job对应的ID为40dcc6d2ba90f13930abce295de8d038,使用默认state.savepoints.dir配置指定的Savepoint目录,执行如下命令:
bin/flink savepoint 40dcc6d2ba90f13930abce295de8d038
可以看到,在目录hdfs://namenode01.td.com/flink-1.5.3/flink-savepoints/savepoint-40dcc6-4790807da3b0下面生成了ID为40dcc6d2ba90f13930abce295de8d038的Job的Savepoint数据。
为正在运行的Flink Job指定一个目录存储Savepoint数据,执行如下命令:
bin/flink savepoint 40dcc6d2ba90f13930abce295de8d038 hdfs://namenode01.td.com/tmp/flink/savepoints
可以看到,在目录 hdfs://namenode01.td.com/tmp/flink/savepoints/savepoint-40dcc6-a90008f0f82f下面生成了ID为40dcc6d2ba90f13930abce295de8d038的Job的Savepoint数据。

从Savepoint恢复

现在,我们可以停掉Job 40dcc6d2ba90f13930abce295de8d038,然后通过Savepoint命令来恢复Job运行,命令格式如下所示:
bin/flink run -s :savepointPath [:runArgs]
以上面保存的Savepoint为例,恢复Job运行,执行如下命令:

bin/flink run -s hdfs://namenode01.td.com/tmp/flink/savepoints/savepoint-40dcc6-a90008f0f82f flink-app-jobs.jar
可以看到,启动一个新的Flink Job,ID为cdbae3af1b7441839e7c03bab0d0eefd。

Savepoint目录结构

下面,我们看一下Savepoint目录下面存储内容的结构,如下所示:

hdfs dfs -ls /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b
Found 5 items
-rw-r--r--   3 hadoop supergroup       4935 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/50231e5f-1d05-435f-b288-06d5946407d6
-rw-r--r--   3 hadoop supergroup       4599 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/7a025ad8-207c-47b6-9cab-c13938939159
-rw-r--r--   3 hadoop supergroup       4976 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/_metadata
-rw-r--r--   3 hadoop supergroup       4348 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/bd9b0849-aad2-4dd4-a5e0-89297718a13c
-rw-r--r--   3 hadoop supergroup       4724 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/be8c1370-d10c-476f-bfe1-dd0c0e7d498a

如上面列出的HDFS路径中,11bbc5是Flink Job ID字符串前6个字符,后面bd967f90709b是随机生成的字符串,然后savepoint-11bbc5-bd967f90709b作为存储此次Savepoint数据的根目录,最后savepoint-11bbc5-bd967f90709b目录下面_metadata文件包含了Savepoint的元数据信息,其中序列化包含了savepoint-11bbc5-bd967f90709b目录下面其它文件的路径,这些文件内容都是序列化的状态信息。

使用EventTime与WaterMark

WaterMark通过数据源或水印生成器插入到流中。
下面,我们通过实际编程实践,来说明一些需要遵守的基本原则,以便在开发中进行合理设置。
在开发Flink流数据处理程序时,需要指定Time Notion,Flink API提供了TimeCharacteristic枚举类,内部定义了3种Time Notion(参考上面说明)。设置Time Notion的示例代码,如下所示:

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

上面,我们指定了基于TimeCharacteristic.EventTime来进行数据处理。如果我们没有显式指定TimeCharacteristic,默认使用TimeCharacteristic.ProcessTime。
基于EventTime的数据处理,需要对进入的数据元素指派时间戳,并且指定如何生成WaterMark,这样才能通过WaterMark来机制控制输入数据的完整性(事件到达),以便触发对指定Window进行计算。有两种方式实现时间戳指派和生成WaterMark:

  • 在Flink程序一开始调用assignTimestampsAndWatermarks()进行指派
  • 在Source Operator中直接指派
    下面,我们会基于这两种方式进行编码实现:

调用assignTimestampsAndWatermarks()进行指派

TimeWindow的大小设置为1分钟(60000ms),允许延迟到达时间设置为50秒(50000ms),并且为了模拟流数据元素事件时间早于当前处理系统的系统时间,设置延迟时间为2分钟(120000ms)。
我们自定义实现了一个用来模拟的Source Operator,代码如下所示:

class StringLineEventSource(val latenessMillis: Long) extends RichParallelSourceFunction[String] {
 
  val LOG = LoggerFactory.getLogger(classOf[StringLineEventSource])
  @volatile private var running = true
  val channelSet = Seq("a", "b", "c", "d")
  val behaviorTypes = Seq(
    "INSTALL", "OPEN", "BROWSE", "CLICK",
    "PURCHASE", "CLOSE", "UNINSTALL")
  val rand = Random
 
  override def run(ctx: SourceContext[String]): Unit = {
    val numElements = Long.MaxValue
    var count = 0L
 
    while (running && count < numElements) {
      val channel = channelSet(rand.nextInt(channelSet.size))
      val event = generateEvent()
      LOG.debug("Event: " + event)
      val ts = event(0)
      val id = event(1)
      val behaviorType = event(2)
      ctx.collect(Seq(ts, channel, id, behaviorType).mkString("\t"))
      count += 1
      TimeUnit.MILLISECONDS.sleep(5L)
    }
  }
 
  private def generateEvent(): Seq[String] = {
    // simulate 10 seconds lateness
    val ts = Instant.ofEpochMilli(System.currentTimeMillis)
      .minusMillis(latenessMillis)
      .toEpochMilli
 
    val id = UUID.randomUUID().toString
    val behaviorType = behaviorTypes(rand.nextInt(behaviorTypes.size))
    // (ts, id, behaviorType)
    Seq(ts.toString, id, behaviorType)
  }
 
  override def cancel(): Unit = running = false
}

流数据中的数据元素为字符串记录行的格式,包含字段:事件时间、渠道、用户编号、用户行为类型。这里,我们直接调用SourceContext.collect()方法,将数据元素发送到下游进行处理。
在Flink程序中,通过调用stream: DataStream[T]的assignTimestampsAndWatermarks()进行时间戳的指派,并生成WaterMark。然后,基于Keyed Window生成Tumbling Window(不存在Window重叠)来操作数据记录。最后,将计算结果输出到Kafka中去。
对应的实现代码,如下所示:

def main(args: Array[String]): Unit = {
 
  val params = ParameterTool.fromArgs(args)
  checkParams(params)
  val sourceLatenessMillis = params.getRequired("source-lateness-millis").toLong
  maxLaggedTimeMillis = params.getLong("window-lagged-millis", DEFAULT_MAX_LAGGED_TIME)
  val windowSizeMillis = params.getRequired("window-size-millis").toLong
 
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) // 设置为TimeCharacteristic.EventTime
 
  val stream: DataStream[String] = env.addSource(new StringLineEventSource(sourceLatenessMillis))
 
  // create a Kafka producer for Kafka 0.9.x
  val kafkaProducer = new FlinkKafkaProducer09(
    params.getRequired("window-result-topic"),
    new SimpleStringSchema, params.getProperties
  )
 
  stream
    .setParallelism(1)
    .assignTimestampsAndWatermarks( // 指派时间戳,并生成WaterMark
       new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(maxLaggedTimeMillis)) {
         override def extractTimestamp(element: String): Long = {
           element.split("\t")(0).toLong
         }
       })
    .setParallelism(2)
    .map(line => {
      // ts, channel, id, behaviorType
      val a = line.split("\t")
      val channel = a(1)
      ((channel, a(3)), 1L)
    })
    .setParallelism(3)
    .keyBy(0)
    .window(TumblingEventTimeWindows.of(Time.milliseconds(windowSizeMillis))) // 使用Keyed Window
    .process(new EventTimeWindowReduceFunction())
    .setParallelism(4)
    .map(t => {
      val windowStart = t._1
      val windowEnd = t._2
      val channel = t._3
      val behaviorType = t._4
      val count = t._5
      Seq(windowStart, windowEnd, channel, behaviorType, count).mkString("\t")
    })
    .setParallelism(3)
    .addSink(kafkaProducer)
    .setParallelism(3)
 
  env.execute(getClass.getSimpleName)
}

上面,我们使用了Flink内建实现的BoundedOutOfOrdernessTimestampExtractor来指派时间戳和生成WaterMark。这里,我们实现了从事件记录中提取时间戳的逻辑,实际生成WaterMark的逻辑使用BoundedOutOfOrdernessTimestampExtractor提供的默认逻辑,在getCurrentWatermark()方法中。我们来看下BoundedOutOfOrdernessTimestampExtractor的实现,代码如下所示:

public abstract class BoundedOutOfOrdernessTimestampExtractor<T> implements AssignerWithPeriodicWatermarks<T> {
 
    private static final long serialVersionUID = 1L;
    private long currentMaxTimestamp;
    private long lastEmittedWatermark = Long.MIN_VALUE;
    private final long maxOutOfOrderness;
 
    public BoundedOutOfOrdernessTimestampExtractor(Time maxOutOfOrderness) {
        if (maxOutOfOrderness.toMilliseconds() < 0) {
            throw new RuntimeException("Tried to set the maximum allowed " +
                "lateness to " + maxOutOfOrderness + ". This parameter cannot be negative.");
        }
        this.maxOutOfOrderness = maxOutOfOrderness.toMilliseconds();
        this.currentMaxTimestamp = Long.MIN_VALUE + this.maxOutOfOrderness; // 初始设置当前最大事件时间戳
    }
 
    public long getMaxOutOfOrdernessInMillis() {
        return maxOutOfOrderness;
    }
 
    public abstract long extractTimestamp(T element);
 
    @Override
    public final Watermark getCurrentWatermark() {
        long potentialWM = currentMaxTimestamp - maxOutOfOrderness; // 当前最大事件时间戳,减去允许最大延迟到达时间
        if (potentialWM >= lastEmittedWatermark) { // 检查上一次emit的WaterMark时间戳,如果比lastEmittedWatermark大则更新其值
            lastEmittedWatermark = potentialWM;
        }
        return new Watermark(lastEmittedWatermark);
    }
 
    @Override
    public final long extractTimestamp(T element, long previousElementTimestamp) {
        long timestamp = extractTimestamp(element);
        if (timestamp > currentMaxTimestamp) { // 检查新到达的数据元素的事件时间,用currentMaxTimestamp记录下当前最大的
            currentMaxTimestamp = timestamp;
        }
        return timestamp;
    }
}

可以看到,在getCurrentWatermark()和extractTimestamp()方法中,lastEmittedWatermark是WaterMark中的时间戳,计算它时,总是根据当前进入Flink处理系统的数据元素的最大的事件时间currentMaxTimestamp,然后再减去一个maxOutOfOrderness(外部配置的支持最大延迟到达的时间),也就说,这里面实现的WaterMark中的时间戳序列是非严格单调递增的。
我们实现的Flink程序为EventTimeTumblingWindowAnalytics,提交到Flink集群运行,执行如下命令:

bin/flink run --class org.shirdrn.flink.windowing.EventTimeTumblingWindowAnalytics flink-demo-assembly-0.0.1-SNAPSHOT.jar \
  --window-result-topic windowed-result-topic \
  --zookeeper.connect 172.16.117.63:2181,172.16.117.64:2181,172.16.117.65:2181 \
  --bootstrap.servers ali-bj01-tst-cluster-002.xiweiai.cn:9092,ali-bj01-tst-cluster-003.xiweiai.cn:9092,ali-bj01-tst-cluster-004.xiweiai.cn:9092 \
  --source-lateness-millis 120000 \
  --window-lagged-millis 50000 \
  --window-size-millis 60000

在Source Operator中直接指派

和上面我们最终期望的逻辑基本保持一致,我们把指派时间戳和生成WaterMark的逻辑,提取出来放到Source Operator实现中,对应的关键代码片段,如下所示:

  var lastEmittedWatermark = Long.MinValue
  var currentMaxTimestamp = Long.MinValue + maxLaggedTimeMillis
... ...
      ctx.collectWithTimestamp(Seq(ts, channel, id, behaviorType).mkString("\t"), ts.toLong)
      ctx.emitWatermark(getCurrentWatermark(ts.toLong))
... ...
  private def getCurrentWatermark(ts: Long): Watermark = {
    if (ts > currentMaxTimestamp) {
      currentMaxTimestamp = ts
    }
    val watermarkTs = currentMaxTimestamp - maxLaggedTimeMillis
    if (watermarkTs >= lastEmittedWatermark) {
      lastEmittedWatermark = watermarkTs
    }
    new Watermark(lastEmittedWatermark)
  }

需要在Flink程序的main方法中,将外部配置的与WaterMark生成相关的参数值,传到Source Operator实现类中,如下所示:

val stream: DataStream[String] = env.addSource(
  new StringLineEventSourceWithTsAndWaterMark(sourceLatenessMillis, maxLaggedTimeMillis))

同时,把前面调用assignTimestampsAndWatermarks()的方法去掉即可。
编译后,提交到Flink集群运行,可以查看输出结果,和前面类似,输出结果正是我们所期望的。

Keyed Window与Non-Keyed Window

链接:http://shiyanjun.cn/archives/1775.html
从编程API上看,Keyed Window编程结构,可以直接对输入的stream按照Key进行操作,输入的stream中识别Key,即输入stream中的每个数据元素哪一部分是作为Key来关联这个数据元素的,这样就可以对stream中的数据元素基于Key进行相关计算操作,如keyBy,可以根据Key进行分组(相同的Key必然可以分到同一组中去)。如果输入的stream中没有Key,比如就是一条日志记录信息,那么无法对其进行keyBy操作。而对于Non-Keyed Window编程结构来说,无论输入的stream具有何种结构(比如是否具有Key),它都认为是无结构的,不能对其进行keyBy操作,而且如果使用Non-Keyed Window函数操作,就会对该stream进行分组(具体如何分组依赖于我们选择的WindowAssigner,它负责将stream中的每个数据元素指派到一个或多个Window中),指派到一个或多个Window中,然后后续应用到该stream上的计算都是对Window中的这些数据元素进行操作。
从计算上看,Keyed Window编程结构会将输入的stream转换成Keyed stream,逻辑上会对应多个Keyed stream,每个Keyed stream会独立进行计算,这就使得多个Task可以对Windowing操作进行并行处理,具有相同Key的数据元素会被发到同一个Task中进行处理。而对于Non-Keyed Window编程结构,Non-Keyed stream逻辑上将不能split成多个stream,所有的Windowing操作逻辑只能在一个Task中进行处理,也就是说计算并行度为1。
在实际编程过程中,我们可以看到DataStream的API也有对应的方法timeWindow()和timeWindowAll(),他们也分别对应着Keyed Window和Non-Keyed Window。

sate

转载自过往记忆(https://www.iteblog.com/)
链接:https://www.iteblog.com/archives/2417.html

keyed state.png

keyed state 多种数据结构
operator state.png

note:Operator States的数据结构不像Keyed States丰富,现在只支持List

多种保存点

多种后端保存

用户可以根据自己的需求选择,如果数据量较小,可以存放到MemoryStateBackend和FsStateBackend中,如果数据量较大,可以放到RockDB中。

WindowFunction (Legacy)

窗口的处理函数,但是获取的contextual信息少,也没有一些先进的特征,比如per-window keyed state。未来将会被抛弃。

public interface WindowFunction<IN, OUT, KEY, W extends Window> extends Function, Serializable {

  /**
   * Evaluates the window and outputs none or several elements.
   *
   * @param key The key for which this window is evaluated.
   * @param window The window that is being evaluated.
   * @param input The elements in the window being evaluated.
   * @param out A collector for emitting elements.
   *
   * @throws Exception The function may throw exceptions to fail the program and trigger recovery.
   */
  void apply(KEY key, W window, Iterable<IN> input, Collector<OUT> out) throws Exception;
}

DataStream<Tuple2<String, Long>> input = ...;

input
    .keyBy(<key selector>)
    .window(<window assigner>)
    .apply(new MyWindowFunction());

时间窗口的机制

Tumbling windows are aligned to epoch, i.e, 1970-01-01T00:00:00. So with a tumbling window of 10 seconds 2017-07-03T20:19:35Z would to into the window from [2017-07-03T20:19:30Z, 2017-07-03T20:19:40Z) and 2017-07-03T20:22:30Z would into [2017-07-03T20:22:30Z, 2017-07-03T20:22:40Z).
35的事件触发的窗口是[30-40)的窗口。

MapStateDescriptor

public void open(Configuration parameters) throws Exception {
        MapStateDescriptor<String, Word> descriptor =
                new MapStateDescriptor<>(
                        "words", // the state name
                        BasicTypeInfo.STRING_TYPE_INFO, // type information
                        TypeInformation.of(new TypeHint<Word>() {})
                        ); // default value of the state, if nothing was set
       // sum = getRuntimeContext().getState(descriptor);

    }
public void open(Configuration parameters) throws Exception {
        MapStateDescriptor<String, Word> descriptor =
                new MapStateDescriptor<>(
                        "words", // the state name
                        String.class, // type information
                        Word.class
                        ); // default value of the state, if nothing was set
       // sum = getRuntimeContext().getState(descriptor);

    }

设计草稿

时间、窗口、水印

链接:https://cwiki.apache.org/confluence/display/FLINK/Time+and+Order+in+Streams
讲了窗口,时间,水印的概念,还有时间窗口计算后的时间戳应该怎么赋值。

state、fault tolence

链接:https://cwiki.apache.org/confluence/display/FLINK/Stateful+Stream+Processing#StatefulStreamProcessing-Stateinstreamingprograms

目录

Streams and Operations on Streams

链接:https://cwiki.apache.org/confluence/display/FLINK/Streams+and+Operations+on+Streams

TaskManager故障恢复

JobManager可以通过配置高可用的zookeeper来保证故障恢复,TaskManager怎么故障恢复能?


image.png

Keep in mind that in In stand alone mode a TM process that has exited
won't be automatically restarted though.

实践所得:在standalone集群模式下,杀死一个TaskManager,那么机器上的这个TaskManager不会重启,会使用其他机器剩余可用的TaskManager中slots来运行失败的task。

Slots

image.png

A Flink cluster needs exactly as many task slots as the highest parallelism used in the job. No need to calculate how many tasks (with varying parallelism) a program contains in total.

flink使用的slot数目是最高的并行度数目。

alignment

alignment的影响


image.png

Asynchronous State Snapshots

只有RockDB里面才有


image.png

各种state的例子

链接:https://www.slideshare.net/tillrohrmann/fault-tolerance-and-job-recovery-in-apache-flink

operator state.png

优点.png

image.png

state backend

image.png

同步和异步的checkpoint区别

image.png

image.png

image.png

image.png

异步

链接:https://www.jianshu.com/p/a2a0dade97b8
我们注意到上面描述的机制意味着当 operator 向后端存储快照时,会停止处理输入的数据。这种同步操作会在每次快照创建时引入延迟。
我们完全可以在存储快照时,让 operator 继续处理数据,让快照存储在后台异步运行。为了做到这一点,operator 必须能够生成一个后续修改不影响之前状态的状态对象。例如 RocksDB 中使用的写时复制( copy-on-write )类型的数据结构。
接收到输入的 barrier 时,operator异步快照复制出的状态(注:checkpoint的同步部分,复制状态可能会花费较多的时间,这也是为什么checkpoint同步部分时间很长的原因)。然后立即发射 barrier 到输出流,继续正常的流处理。一旦后台异步快照完成,它就会向 checkpoint coordinator(JobManager)确认 checkpoint 完成。现在 checkpoint 完成的充分条件是:所有 sink 接收到了 barrier,所有有状态 operator 都确认完成了状态备份(可能会比 sink 接收到 barrier 晚)。
RocksDBStateBackend 模式对于较大的 Key 进行更新操作时序列化和反序列化耗时很多。可以考虑使用 FsStateBackend 模式替代。

Checkpoint UI信息

image.png

image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容