2018-06-26 code

# -*- coding: utf-8 -*-
"""
Created on Tue Jun 26 16:52:22 2018

@author: hao.wang
"""
import os
import pandas as pd
import sys
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import scipy.signal as signal
from sklearn.preprocessing import scale

cwd = os.getcwd()
# data_dir = 'D:\百分点工作资料\PHM技术资料\_871PHM_贝晓强\871PHM\871PHM\data_dictionary\data1.csv'

data_dir = 'data1.csv'
strPath = data_dir

ori_data = pd.read_csv(strPath)
ori_data = ori_data.sort_values(by=['code',  'time']) 

machine1 = ori_data[ori_data['code'].isin([663201])]
machine2 = ori_data[ori_data['code'].isin([663202])]
machine3 = ori_data[ori_data['code'].isin([663203])]

machine1.to_csv('machine1.csv')
machine2.to_csv('machine2.csv')
machine3.to_csv('machine3.csv')

machine1 = pd.read_csv('machine1.csv')
machine2 = pd.read_csv('machine2.csv')
machine3 = pd.read_csv('machine3.csv')


# delete the non-numerical columns
tmp = machine1.dtypes == 'object' # store if the type is not numerical
for i in range(0, len(tmp)-1):
    if tmp[i] == True:
        del machine1[tmp.index[i]]
        del machine2[tmp.index[i]]
        del machine3[tmp.index[i]]


# def separate(df, n):
#     to_cluster_data = df.loc[:, ('frequency', 'GNOM', 'MP02', 'MP03', 'MP05', 'MP10', 'MP11')]
#     scaled = scale(to_cluster_data, axis=0)
#     scaled[:, 0] = scaled[:, 0]*6
#     estimator = KMeans(n_clusters=n)
#     estimator.fit(scaled)
#     label_pred = estimator.labels_
#     # centroids = estimator.cluster_centers_
#     # inertia = estimator.inertia_
#     return label_pred


# see the frequency of different machines
machine1['frequency'].value_counts()
machine2['frequency'].value_counts()
machine3['frequency'].value_counts()

ori_data['frequency'].value_counts()
machine1['preset_power'].value_counts()


def choose_frequency(machine):
    tmp_count = machine['frequency'].value_counts()
    tmp_count > len(machine)*0.02
    # chooose the frequency that is larger than 0.02
    choose_freq = tmp_count.index[tmp_count > len(machine)*0.02]
    return choose_freq


choose_frequency(machine1)
choose_frequency(machine2)
choose_frequency(machine3)


# use boxplot to show the data
def save_seriesplot(df, name):
    # close the in screen print of the figure
    plt.ioff()
    # define a figure
    f, axs = plt.subplots(27, 2, figsize=(10*2, 27*2))
    axs = axs.ravel() # use ravel to make the tuple flat
    for i in range(0, len(df.iloc[0,:])-1):
        axs[i].plot(df.iloc[:, i].reset_index(drop=True))
        axs[i].set_title(df.columns[i])
    f.savefig(str(name)+'_seriesplot.png')
    # open the on screen print of the figure
    plt.ion()


# define a function to separate diffrent frequency on specific machine
def choose_and_plot(machine, name):
    freq = choose_frequency(machine)
    for item in freq:
        print(item)
        machine_freq = machine[machine['frequency'] == item]
        machine_freq = machine_freq[machine_freq['op_st'] == 112]
        machine_freq.to_csv('freq_' + str(item) + '_'+ name + '.csv')
        save_seriesplot(machine_freq, 'freq_' + str(item) + '_' + name)


choose_and_plot(machine1, 'machine1')
choose_and_plot(machine2, 'machine2')
choose_and_plot(machine3, 'machine3')



len(machine1)


machine_freq['']




# define a function to find the average stable length of a series


# def mean_normal(series):
#     tmp_length = 1  # store the temp normal series length
#     shift_times = 0 # store the total shift times
#     length = 0
#     search_range = len(series)
#     for i in range(1, search_range):
#         if series[i]==series[i-1]:
#             tmp_length += 1
#         else:
#             shift_times += 1
#             length = length/shift_times*(shift_times-1) + tmp_length/shift_times*1
#             # print(tmp_length)
#             # print(length)
#             tmp_length = 1
#     # do again for the last patch since there is not shift
#     shift_times += 1
#     return length/shift_times*(shift_times-1) + tmp_length/shift_times*1
#
#
# mean_normal(label_pred)
#
#
# # define my function to smooth abnormal shift
# def smooth_abnormal(series):
#     length = mean_normal(series)
#     radius = int(length/2)
#     series_new = series
#     # then we try to smooth the abnormal shifts:
#     for i in range(0, len(series)):
#         if series[i] != series[i-radius] and series[i] != series[i+radius]:
#             series_new[i] = series[i-radius]
#     return series_new
#
#
# # label_smooth = smooth_abnormal(label_pred)
# label_smooth = signal.medfilt(label_pred, 999)
#
# f, axs = plt.subplots(4, 1, figsize=(10, 10))
# axs = axs.ravel()  # use ravel to make the tuple flat
# axs[0].plot(label_pred)
# axs[0].set_title('label_pred')
# axs[1].plot(label_smooth)
# axs[1].set_title('label_smooth')
# axs[2].plot(machine1['frequency'])
# axs[2].set_title('frequency')
#
#
# machine1['label'] = label_smooth
# machine1['label'] = label_pred

len(machine1) + len(machine2) + len(machine3) == len(ori_data)


del ori_data


        

machine1.columns


# separate the machine data into different frequency

# machine1_frequency_1 = machine1[machine1['label'].isin(['0'])]
# machine1_frequency_2 = machine1[machine1['label'].isin(['1'])]
# machine1_frequency_3 = machine1[machine1['label'].isin(['2'])]
#
# machine1_frequency_1 = machine1_frequency_1[machine1_frequency_1['op_st'].isin([112])]
# machine1_frequency_2 = machine1_frequency_2[machine1_frequency_2['op_st'].isin([112])]
# machine1_frequency_3 = machine1_frequency_3[machine1_frequency_3['op_st'].isin([112])]


# make some summarize about the machines data
def save_quant(df, name):
    # make a copy of original stdout route
    stdout_backup = sys.stdout
    # define the log file that receives your log info
    log_file = open(str(name) + "_message.log", "w")
    # redirect print output to log file
    sys.stdout = log_file
    # begin print 
    for item in df.columns:
        print(df[item].describe())
    # close the file
    log_file.close()
    # restore the output to initial pattern
    sys.stdout = stdout_backup


save_quant(machine1, 'machine1')
save_quant(machine2, 'machine2')
save_quant(machine3, 'machine3')


# use boxplot to show the data   
def save_boxplot(df, name):
    # close the in screen print of the figure 
    plt.ioff() 
    # define a figure
    f, axs = plt.subplots(6, 9, figsize=(6*6 , 9*6))
    axs = axs.ravel() # use ravel to make the tuple flat
    for i in range(0, len(df.iloc[0, :])-1):
        axs[i].boxplot(df.iloc[:, i])
        axs[i].set_title(df.columns[i])
    f.savefig(str(name)+'_boxplot.png')
    # open the on screen print of the figure
    plt.ion()
    

save_boxplot(machine1, 'machine1')
save_boxplot(machine2, 'machine2')
save_boxplot(machine3, 'machine3')
    




save_seriesplot(machine1_frequency_1, 'machine1_frequency_1')
save_seriesplot(machine1_frequency_2, 'machine1_frequency_2')
save_seriesplot(machine1_frequency_3, 'machine1_frequency_3')

save_seriesplot(machine2, 'machine2')
save_seriesplot(machine3, 'machine3')




import os
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt


wd = os.getcwd()

data_dir = '/data_20180627/my_871uptransmitterminutedata2018-06-27.csv'
# obtain the original data
ori_data = pd.read_csv(wd + data_dir, header=None, sep='\t')
# split the string to measurement data
split_data = ori_data.iloc[:, 8].str.split(':', expand=True)
# 删除第一列,因为是空列
del split_data[0]
# give name to those columns
# 给各列命名
split_data.columns = ['mode', 'frequency', 'preset_power', 'mdlt_md', 'op_st',
                    'laV1', 'lg1V2', 'lg2V2', 'laV2', 'VaV2',
                    'APD', 'VSWR', 'Pfwd', 'Vfil1', 'VaV1',
                    'Vfil2', 'Vg1V2', 'Vg2V2', 'water', 'MP01',
                    'MP13', 'MP02', 'MP03', 'MP04', 'MP05',
                    'MP06', 'MP07', 'MP08', 'MP09', 'MP10',
                    'MP11', 'MP12', 'MS22', 'MS23', 'MS24',
                    'MS25', 'MS27','CPFD', 'CPRV', 'CPH1',
                    'CPH2', 'RFAT', 'GNOM', 'PREEQ', 'TAF',
                    'TOL', 'TAO', 'TNOM', 'TP', 'TTCS',
                    'TIS', 'TSF', 'TFS', 'TFH', 'TBHH',
                    'switch_comb']
len(split_data.columns)

# for some '57' like entries, can be transferred to numeric by 'to_numeric' function
# 部分列可以直接转换为numeric模式
for item in ['mode', 'frequency', 'preset_power', 'mdlt_md', 'op_st',
                    'laV1', 'lg1V2', 'lg2V2', 'laV2', 'VaV2',
                    'APD', 'VSWR', 'Pfwd', 'Vfil1', 'VaV1',
                    'Vfil2', 'Vg1V2', 'Vg2V2', 'water', 'MP01',
                    'MP13', 'MP02', 'MP03', 'MP04', 'MP05',
                    'MP06', 'MP07', 'MP08', 'MP09', 'MP10',
                    'MP11', 'MP12',
                                    'CPFD', 'CPRV', 'CPH1',
                    'CPH2', 'RFAT', 'GNOM',        'TAF',
                    'TOL', 'TAO', 'TNOM', 'TP', 'TTCS',
                    'TIS', 'TSF', 'TFS', 'TFH', 'TBHH',
                    'switch_comb']:
    split_data[item] = pd.to_numeric(split_data[item], errors='coerce').fillna(0)


# convert ON OFF to 0/1 variables
for item in ['MS22', 'MS23', 'MS24', 'MS25', 'MS27', 'PREEQ']:
    split_data[item] = (split_data[item] == 'ON').astype(int)
split_data['index'] = split_data.index


other_data = pd.DataFrame({'code': ori_data.ix[:, 1], 'time': ori_data.ix[:, 2]})
other_data['index'] = other_data.index

# merge to obtain a new dataframe
new_data = pd.merge(other_data, split_data, on='index')
new_data.columns
new_data.dtypes
new_data = new_data.sort_values(by='time')
new_data.to_csv('new_data.csv')

new_data = pd.read_csv('new_data.csv')
# change the time string to 'datetime' format
new_data['time'] = pd.to_datetime(new_data['time'])
new_data = new_data.set_index('time', drop= False)
# separate the newdata based on time index
new_20170725 = new_data['2017-07-24':'2017-07-26']
new_20170805 = new_data['2017-08-04':'2017-08-06']
new_20170815 = new_data['2017-08-14':'2017-08-17']

# check the total length
len(new_20170725) + len(new_20170805) + len(new_20170815)
len(new_data)

# 找到高压挂起的时间点
# Find the high V pending time using TTCS
new_20170725['TTCS'].value_counts()
new_20170805['TTCS'].value_counts()
new_20170815['TTCS'].value_counts()

new_20170815[new_20170815['TTCS'] == 1]

# 找到粗调的时间点
# 1:normal 2:coarse 3:fine 4: VaRising
new_20170725['TFS'].value_counts()
new_20170805['TFS'].value_counts()
new_20170815['TFS'].value_counts()

tmp = new_20170725[new_20170725['TFS'] == 2.0]
new_20170725[new_20170725['TFS'] == 3.0]
new_20170725[new_20170725['TFS'] == 4.0]



# 画图
# use boxplot to show the data
def save_seriesplot(df, name):
    # close the in screen print of the figure
    plt.ioff()
    # define a figure
    f, axs = plt.subplots(56, 1, figsize=(80, 80))
    axs = axs.ravel() # use ravel to make the tuple flat
    for i in range(0, 56):
        axs[i].plot(df.iloc[:, i + 3], linewidth=0.5)
        axs[i].set_title(df.columns[i + 3])
    plt.subplots_adjust(hspace=1)
    f.savefig(str(name)+'_seriesplot.png')
    # open the on screen print of the figure
    plt.ion()


# use boxplot to show the data
def save_seriesplot_noindex(df, name):
    # close the in screen print of the figure
    plt.ioff()
    # define a figure
    f, axs = plt.subplots(56, 1, figsize=(80, 80))
    axs = axs.ravel() # use ravel to make the tuple flat
    if drop == False:
        for i in range(0, 56):
            axs[i].plot(df.iloc[:, i + 3], linewidth=0.5)
            axs[i].set_title(df.columns[i + 3])
    else:
        for i in range(0, 56):
            axs[i].plot(df.iloc[:, i + 3].reset_index(drop=True), linewidth=0.5)
            axs[i].set_title(df.columns[i + 3])
    plt.subplots_adjust(hspace=1)
    f.savefig(str(name)+'_seriesplot.png')
    # open the on screen print of the figure
    plt.ion()


new_20170725.iloc[:, 0+3].reset_index(drop=False)
f = plt
f.plot(new_20170725.iloc[:, 0+3].reset_index(drop=False))

save_seriesplot(new_20170725, 'new_20170725')
save_seriesplot(new_20170805, 'new_20170805')
save_seriesplot(new_20170815, 'new_20170815')




# remove all zero data as possible
# get the on working data
new_20170725_nozero = new_20170725[(new_20170725['laV1'] > 0.5) &
                                   (new_20170725['op_st'] == 112)&
                                   (new_20170725['laV2'] > 0.5)]

new_20170805_nozero = new_20170805[(new_20170805['laV1'] > 0.5) &
                                   (new_20170805['op_st'] == 112)&
                                   (new_20170805['laV2'] > 0.5)]

new_20170815_nozero = new_20170815[(new_20170815['laV1'] > 0.5) &
                                   (new_20170815['op_st'] == 112)&
                                   (new_20178025['laV2'] > 0.5)]


save_seriesplot(new_20170725_nozero, 'new_20170725_nozero', True)
save_seriesplot(new_20170805_nozero, 'new_20170805_nozero', True)
save_seriesplot(new_20170815_nozero, 'new_20170815_nozero', True)




# all data sum up for frequency 
import pandas as pd
import matplotlib.pyplot as plt

# read the data
new_data = pd.read_csv('new_data.csv')
machine1 = pd.read_csv('machine1.csv')
machine2 = pd.read_csv('machine2.csv')
machine3 = pd.read_csv('machine3.csv')

# remove some columns
del new_data['Unnamed: 0']
del new_data['index']
del machine1['Unnamed: 0'], machine1['TAH'], machine1['index']
del machine2['Unnamed: 0'], machine2['TAH'], machine2['index']
del machine3['Unnamed: 0'], machine3['TAH'], machine3['index']

# check
len(new_data.ix[0, :])
len(machine1.ix[0, :])
len(machine2.ix[0, :])
len(machine3.ix[0, :])

# merge, 'axis=0' means join by rows
all_data = pd.concat([new_data, machine1, machine2, machine3], axis=0, join='outer')
# check
len(all_data) == len(machine1) + len(machine2) +len(machine3) +len(new_data)
# see the counts of different frequency
tmp_counts = all_data['frequency'].value_counts()
tmp_counts

# divide by frequency
# based on THAMES Transmitter Technique Specifications
interval = [[5900, 6295],   [7100, 7600],   [9400, 9900],
            [11500, 12175], [13570, 13870], [15030, 15800],
            [17480, 17900], [18900, 19020], [21450, 21850],
            [25670, 26100]]

# define some frequency series
freq = [None]*10
# sort the data based on the frequency interval
for i in range(0, 10):
    freq[i] = all_data[(all_data['frequency'] >= interval[i][0]) &
                       (all_data['frequency'] <= interval[i][1])]

# see the length of each frequency
sum = 0
for i in range(0, 10):
    print(len(freq[i]))
    sum += len(freq[i])

len(all_data)-sum
tmp = all_data[(all_data['frequency'] == 9370)]
len(tmp)


del f





最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容