一、前置准备条件
我们需要知道如何进行比较并交换的原子操作、如何进行线程的挂起和唤醒。
(1)Unsafe中的CAS
(2)Unsafe中的park和unpark
二、一个错误的锁
package com.suncy.article.article6;
import sun.misc.Unsafe;
import java.lang.reflect.Field;
import java.util.concurrent.LinkedBlockingQueue;
public class ErrorLockCode {
private int state = 0;
private LinkedBlockingQueue<Thread> threadLinkedBlockingQueue = new LinkedBlockingQueue<Thread>();
//unsafe包 和 state字段的偏移量
private static final Unsafe unsafe;
private static final long stateOffset;
static {
try {
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
unsafe = (Unsafe) f.get(null);
stateOffset = unsafe.objectFieldOffset
(ErrorLockCode.class.getDeclaredField("state"));
} catch (Exception ex) {
throw new Error(ex);
}
}
public void lock() {
if (!unsafe.compareAndSwapInt(this, stateOffset, 0, 1)) {
//修改state失败,获取锁失败,线程加入队列,等待被唤醒
threadLinkedBlockingQueue.add(Thread.currentThread());
unsafe.park(false, 0);
threadLinkedBlockingQueue.poll();
}
}
public void unlock() {
if (unsafe.compareAndSwapInt(this, stateOffset, 1, 0)) {
//修改state成功,表示解锁成功,唤醒线程
Thread thread = threadLinkedBlockingQueue.peek();
unsafe.unpark(thread);
}
}
public static void main(String[] args) {
ErrorLockCode errorLockCode = new ErrorLockCode();
for (int i = 0; i < 100; i++) {
int finalI = i;
new Thread(() -> {
errorLockCode.lock();
System.out.println("==========" + finalI);
System.out.println("加锁成功" + finalI);
System.out.println("执行业务" + finalI);
System.out.println("解锁成功" + finalI);
System.out.println("==========" + finalI);
errorLockCode.unlock();
}).start();
}
}
}
测试结果:
流程描述:
1、在lock方法中,尝试修改state状态0,修改成功,则表示锁成功。修改失败,则将线程放入到队列,并使用park挂起当前线程。
2、在unlock方法中,尝试修改state状态1,修改成功,则表示解锁,并唤醒线程中队头的数据。修改失败,不进行任何处理。
错误原因分析:
我们第一个线程肯定是成功的,但当第一个线程进行了unlock方法的时候,这个unlock会唤醒一个线程,假如这个时候又重新启了一个线程,那么会造成两个线程同时执行到lock和unlock当中的代码,导致锁失效
解决方式:
唤醒的线程需要重新获取锁
三、一个不可重入锁
package com.suncy.article.article6;
import sun.misc.Unsafe;
import java.lang.reflect.Field;
import java.util.concurrent.LinkedBlockingQueue;
public class MyNotReentrantLock {
private volatile int state = 0;
private LinkedBlockingQueue<Thread> linkedBlockingQueue = new LinkedBlockingQueue<Thread>(3333);
//unsafe包 和 state字段的偏移量
private static final Unsafe unsafe;
private static final long stateOffset;
static {
try {
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
unsafe = (Unsafe) f.get(null);
stateOffset = unsafe.objectFieldOffset
(MyNotReentrantLock.class.getDeclaredField("state"));
} catch (Exception ex) {
throw new Error(ex);
}
}
public void lock() {
while (!unsafe.compareAndSwapInt(this, stateOffset, 0, 1)) {
//失败,线程加入队列,等待精准唤醒
//System.out.println("线程入队");
linkedBlockingQueue.add(Thread.currentThread());
unsafe.park(false, 0);
linkedBlockingQueue.remove(Thread.currentThread());
}
}
public void unlock() {
//成功,表示解锁
if (unsafe.compareAndSwapInt(this, stateOffset, 1, 0)) {
//唤醒队列中的线程 不需要删除 只需要查看就行 因为被唤醒之后,会自动移除队列数据
Thread th = linkedBlockingQueue.peek();
if (th != null) {
unsafe.unpark(th);
}
}
}
public static void main(String[] args) {
MyNotReentrantLock myNotReentrantLock = new MyNotReentrantLock();
for (int i = 0; i < 100; i++) {
int finalI = i;
new Thread(() -> {
myNotReentrantLock.lock();
System.out.println("==========" + finalI);
System.out.println("加锁成功" + finalI);
System.out.println("执行业务" + finalI);
System.out.println("解锁成功" + finalI);
System.out.println("==========" + finalI);
myNotReentrantLock.unlock();
}).start();
}
}
}
执行结果:
结果分析:
1、在lock方法中,唤醒的线程重新去抢锁,这个时候保证了在unlock之后唤醒的线程和重新启动的线程重新抢锁,满足了要求。
2、但是这个锁是不可重入的,假如我们同时执行两遍lock方法,就会导致线程死锁,修改方式为判断是否是当前线程,并记录数量。
四、一个可重入的锁
package com.suncy.article.article6;
import sun.misc.Unsafe;
import java.lang.reflect.Field;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicReference;
public class MyReentrantLock {
private volatile int state = 0;
AtomicReference<Thread> owner = new AtomicReference<>();
private LinkedBlockingQueue<Thread> linkedBlockingQueue = new LinkedBlockingQueue<>();
//unsafe包 和 state字段的偏移量
private static final Unsafe unsafe;
private static final long stateOffset;
static {
try {
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
unsafe = (Unsafe) f.get(null);
stateOffset = unsafe.objectFieldOffset
(MyNotReentrantLock.class.getDeclaredField("state"));
} catch (Exception ex) {
throw new Error(ex);
}
}
public boolean tryLock() {
int c = state;
//如果count不等于0,说明存在锁
if (c != 0) {
//判断是不是当前线程持有锁
if (owner.get() == Thread.currentThread()) {
state = c + 1;
//加锁成功
return true;
} else {
//加锁失败
return false;
}
} else {
//count等于0,说明不存在锁
if (unsafe.compareAndSwapInt(this, stateOffset, c, c + 1)) {
//抢锁成功,设置owner为当前线程的引用
owner.set(Thread.currentThread());
return true;
} else {
//加锁失败
return false;
}
}
}
public void lock() {
//尝试抢锁
while (!tryLock()) {
//如果失败,放入到队列中
linkedBlockingQueue.offer(Thread.currentThread());
//并挂起
unsafe.park(false, 0);
//唤醒之后,则从队列中移除,并重新抢锁
linkedBlockingQueue.remove(Thread.currentThread());
}
}
public void unlock() {
//解锁成功
if (tryUnlock()) {
//唤醒队列中的线程
Thread th = linkedBlockingQueue.peek();
if (th != null) {
unsafe.unpark(th);
}
}
}
public boolean tryUnlock() {
if (owner.get() != Thread.currentThread()) {
throw new IllegalMonitorStateException();
} else {
//如果当前线程占有锁,则将计数减1
state--;
//判断count值是否为0,0的话,设置owner为null
if (state == 0) {
owner.compareAndSet(Thread.currentThread(), null);
return true;
} else {
return false;
}
}
}
public static void main(String[] args) {
MyReentrantLock myReentrantLock = new MyReentrantLock();
for (int i = 0; i < 100; i++) {
int finalI = i;
new Thread(() -> {
myReentrantLock.lock();
myReentrantLock.lock();
System.out.println("==========" + finalI);
System.out.println("加锁成功" + finalI);
System.out.println("执行业务" + finalI);
System.out.println("解锁成功" + finalI);
System.out.println("==========" + finalI);
myReentrantLock.unlock();
myReentrantLock.unlock();
}).start();
}
}
}
执行结果:
结果分析:
结果正常,并且执行两遍lock方法也能够运行。