本文为文献阅读笔记
文献:Interactions and links among the noncoding RNAs in plants under stresses
期刊:Theoretical and Applied Genetics
doi:https://doi.org/10.1007/s00122-020-03690-1
时间:2020.09.16
1.Introduction
1.1 P1 背景介绍
由于植物特有的固着性,使得其只能根据环境的改变而做出改变,病原菌及周围的环境变化导致了植物必须做出一系列的改变从而才能够生存,而这些改变在分子角度就是通过非编码RNA(ncRNA)重新编码胁迫响应基因表达的一系列复杂的分子机制调控。
1.2 WHAT IS ncRNA?-Functional RNAs
1.2.1 产生
transcribed from the genome with the assistance of RNA polymerase(Pol)(RNA聚合酶辅助转录)
1.2.2 特点
lack coding ability(缺乏编码能力)
1.2.3 类型
1.2.4 产生过程
1.2.4.1 miRNA的产生
由miRNA genes转录产生pri-miRNA(初级miRNA),pre-miRNA经过蛋白Dicer-like protein1(DCL1)作用分裂产生pre-miRNA(前体miRNA),此时的pre-miRNA包含茎环结构(如figure3所示),pre-miRNA去掉茎环结构后形成miRNA-miRNA*双链,其中一条为指导链,主要发挥作用,另一条为随从链,又叫互补链;随后miRNA-miRNA/*双链解链形成成熟miRNA。
一些pre-miRNA可以产生两个mature RNA,在对应pre-miRNA茎环结构5’和3’序列的mature miRNA名称尾部加上后缀-5p和-3p以示区分,分别表明从前体的5’端臂和3’端臂加工而来的。两个mature miRNA由同一个pre-miRNA产生,且表达量已知,那么将其中表达量低的mature miRNA尾部加上标识:*。
——引用自亚恒的生信学习笔记
相关链接:https://www.cnblogs.com/yahengwang/p/10171087.html
1.2.4.2 siRNA的产生
siRNA可由两种途径产生,一种由长双链RNA前体产生。另一种直接由RNA依赖RNA聚合酶加工生成。
长双链RNA前体来源有两种:分别是正反义转录本对,还有一个是反向重复序列。这两种序列经过加工生成长双链RNA前体,然后加工成为长双链RNA,最后生成siRNA。
invert repeats(IR,反向重复序列):双链DNA分子中以反向方向重复的短序列,可在相邻或中间序列之后重复
-
特例1:virus-derived siRNAs (vsiRNAs, 病毒衍生siRNA)
vsiRNAs由RNA病毒的正链或反链产生,正链或者反链首先加工成dsRNA(双链RNA),然后不同的DCL蛋白将dsRNA加工生成vsiRNA。
特例2:phased siRNAs(phasiRNAs)
PhasiRNA 初级转录本由Pol II(RNA polymerase II) 转录,随后miRNA (microRNA) 引导AGO 蛋白对phasiRNA 初级转录本上的靶位点进行剪切,剪切后的phasiRNA 前体片段( 剪切位点的上游或下游片段) 继而被RDR6 (RNA-dependent RNA polymerases 6) 复制成双链RNA,双链RNA 被DCL4 切割成一系列首尾相接,具有一定相位的21-nt 或24-nt的小RNA,即phasiRNA。成熟的phasiRNA 与AGO 蛋白组装成沉默复合体,作用于靶基因,发挥转录后调控的功能。
PhasiRNA 在物种进化、植物生长发育、 响应生物和非生物胁迫中都扮演着重要的角色。同时,植物中的phasiRNA 在功能上具有物种特异性,如双子叶植物中的phasiRNA 多参与疾病抵抗,而单子叶植物中的phasiRNA 则多与生殖生长相关。
——引用自“植物phasiRNA研究进展(三)”
相关链接:https://www.sohu.com/a/280120094_769248
1.2.4.3 lncRNA的产生
lncRNA是长度大于200nt的ncRNA。其由多种RNA聚合酶转录生成,如Pol II, Pol IV and Pol V。由Pol IV转录的lncRNA通常作为siRNA的前体。 lnc-pri-miRNAs也可以被加工成miRNA(哺乳动物中)。
nt表示单链下的碱基数,1nt即单链上的一个碱基。
1.2.4.4 circRNA的产生
circRNA通常是单链闭合,共价环状的。circRNA两侧的内含子通常相较于线性基因两侧的内含子更长,并具有更少的反向互补序列和重复元件。
2. ncRNA interaction identification——ncRNA互作鉴定
2.1 prediction of ncRNAs and their interactions——ncRNA预测及互作的预测
2.1.1 P1 identification of ncRNAs with computer tools——关于ncRNA鉴定的电脑软件
- 关于miRNA的鉴定标准见参考文献:revisiting criteria for plant MicroRNA annotation in the era of big data
- length of miRNA precursors(miRNA前体的长度)
- number of mismatched positions(错配位点的数量)
- the length of mature miRNA(成熟miRNA的长度)
- lncRNA identification——lncRNA的鉴定
- tools(only work well with sequences derived from lncRNA databases这些软件只是在从lncRNA数据库中提取的序列中表现良好):PLIT,CPC2, IncScore, CPAT and PLEK tools(PLIT performs well on FASTA sequences derived from plant transcriptomic datasets,PLIT在来源于植物转录数据集的FASTA序列上表现良好)
- databases(数据库):NONCODE, GENCODE or CANTATAdb
2.1.2 P2 Databases of identification
- putative ncRNAs(计算机推定的ncRNA数据库) :miRBase, GreeNC, CANTATdb尽管miRBase数据库最常用,但是其正确率仍然低于25%
- experimentally validated ncRNAs(经过实验验证的ncRNA数据库) :lnRNAdb, PLNlnRbase
2.1.3 P3 Computer tools with predict interacitons——预测ncRNA互作的软件
- evaluate the potential for the sRNA-mediated cleavage of lncRNAs(评价sRNA调节lncRNA分裂作为miRNA前体的可能性):psRNATarget
- predicts whether lncRNAs can act as novel miRNA precursors(预测lncRNA是否可以作为miRNA的前体)
- 软件:miRPare
- 使用blast的默认参数比对已知的miRNA和lncRNA判断lncRNA是否可以作为miRNA的前体:Zhou XX, Cui J, Cui HN, Jiang N, Hou XX, Liu S, Gao P, Luan YS, Meng J, Luan FS (2020) Identifcation of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene 735:144403.甜瓜白粉病响应中lncrna的鉴定及其与靶基因和相应mirna的调控关系
- predict eTM sites(预测内源目标模拟位点):psRNATarget, psRobot, TargetFinder
- 评价软件性能
-
TargetFinder:在拟南芥数据库中89%准确度及97%的灵敏度
-psRNATarget,Tapir hybrid,TargetFinder在非拟南芥数据库中都有良好表现
-
TargetFinder:在拟南芥数据库中89%准确度及97%的灵敏度
- 评价软件之间取交集的结果
- 两个软件之间的交集有更高的准确度
- 软件之间取交集容易忽略掉一些重要的互作
- 两种工具的不同组合不太可能出现相同的靶基因
- 一些不适用的软件:RNAplex and BioVLAB-M
- 数据库的更新在3-5年(PlantcircBase and miRBase)
- 下表显示了一些植物ncRNA关键数据库及计算机预测软件
Database | Description | Web link | References |
---|---|---|---|
miRBase | A database of miRNAs collected from various species using experimental and computational methods | http://www.mirbase.org/ | Kozomara and Griffiths-Jones (2014) |
PmiRKB | Basic information of miRNAs in two model plants, Arabidopsis thaliana and Oryza sativa | http://bis.zju.edu.cn/pmirkb/ | Meng et al. (2011) |
PMRD | Integrated information of miRNA sequences and their target genes, secondary structures and expression profiles for more than 110 plants | http://bioinformatics.cau.edu.cn/PMRD/ | Zhang et al. (2010) |
GreeNC | A repository of lncRNAs annotated in plants and algae | http://greenc.sciencedesigners.com | Paytuvi Gallart et al. (2016) |
NONCODE | An integrated knowledge database dedicated to noncoding RNAs (excluding lncRNAs and rRNAs) | http://www.noncode.org/index.php | Fang et al. (2018) |
PNRD | A database supporting several kinds of known ncRNAs (lncRNAs, tRNAs, rRNAs, tasiRNAs, snRNAs and snoRNAs) from multiple sources | http://structuralbiology.cau.edu.cn/PNRD/index.php | Yi et al. (2015) |
lncRNAdb | A reference database for functional lncRNAs | http://lncrnadb.org/ | Quek et al. (2015) |
CIRI2 | A de novo circular RNA identification tool | https://sourceforge.net/projects/ciri/files/ | Gao et al. (2015) |
PcircRNA finder | A plant-specific circRNA prediction tool | http://ibi.zju.edu.cn/bioinplant/tools/manual.htm | Chen et al. (2016a, b) |
TAPIR | Prediction of miRNA targets, including target mimics | http://bioinformatics.psb.ugent.be/webtools/tapir/ | – |
psRNATarget | An analysis server to discover miRNA target pairs | http://plantgrn.noble.org/psRNATarget/ | Dai and Zhao (2011) |
psRobot | Online tool to analyze stem-loop small RNAs and small RNA targets in plants | http://omicslab.genetics.ac.cn/psRobot/ | – |
TargetFinder | Plant small RNA target prediction tool | https://github.com/carringtonlab/TargetFinder | – |
psMimic | A server to predict plant miRNA endogenous target mimics | http://omicslab.genetics.ac.cn/psMimic/ | – |
PeTMbase | A living database of plant eTMs | http://petmbase.org/ | Karakulah et al. (2016) |
spongeScan | A web tool designed to identify and visualize lncRNAs acting as putative miRNA sponges | http://spongescan.rc.ufl.edu/ | – |
PmliPred | Plant miRNA–lncRNA interaction prediction | http://bis.zju.edu.cn/PmliPred/ | Kang et al. (2020) |
PlantcircBase | An online program to predict circRNAs putatively acting as miRNA sponges and their potential circRNA-miRNA-mRNA networks in plants | http://ibi.zju.edu.cn/plantcircbase/ | Chu et al. (2017) |
Tools4miRs | Tools for the prediction and validation of novel miRNAs or miRNA precursors | https://tools4mirs.org/software/precursor_prediction/ | – |
2.2 Validation methods of ncRNA interactions——ncRNA互作的验证
- validation of the sequences and binding sites of ncRNAs with sRNAs(试验验证sRNA与ncRNA序列和结合位点)
- polymerase chain reaction (PCR)
- rapid amplifcation of cDNA ends (RACE)
- degradome analysis(降解组测序分析)
- accurately determining the abundance of siRNAs(精确测定siRNA的丰度):Northern blot hybridization (Northern blot杂交)
- eg. the existence of a siRNA triggered by mulmiR3954-medicated cleavage of MuLnc1 has been confrmed in Morus
multicaulis(鲁桑中已经证实mulmiR3954介导的MuLnc1的分裂产生siRNA)
- eg. the existence of a siRNA triggered by mulmiR3954-medicated cleavage of MuLnc1 has been confrmed in Morus
未完待续.......