叶绿体基因组组装软件NOVOPlasty使用简介

NOVOPlasty 是一个perl脚本,没有依赖任何其他软件,下载好以后直接可以使用。
下载链接
https://github.com/ndierckx/NOVOPlasty

其基本使用方法是

perl NOVOPlasty3.7.2.pl -c config.txt

config.txt文件是需要我们自己准备的,软件包里提供了这个文件,我们需要对应着改里面的内容,文件的内容如下:

Project:
-----------------------
Project name          = Test
Type                  = mito
Genome Range          = 12000-22000
K-mer                 = 39
Max memory            = 
Extended log          = 0
Save assembled reads  = no
Seed Input            = /path/to/seed_file/Seed.fasta
Reference sequence    = /path/to/reference_file/reference.fasta (optional)
Variance detection    = 
Chloroplast sequence  = /path/to/chloroplast_file/chloroplast.fasta (only for "mito_plant" option)

Dataset 1:
-----------------------
Read Length           = 151
Insert size           = 300
Platform              = illumina
Single/Paired         = PE
Combined reads        = 
Forward reads         = /path/to/reads/reads_1.fastq
Reverse reads         = /path/to/reads/reads_2.fastq

Heteroplasmy:
-----------------------
MAF                   = 
HP exclude list       = 
PCR-free              = 

Optional:
-----------------------
Insert size auto      = yes
Insert Range          = 1.9
Insert Range strict   = 1.3
Use Quality Scores    = no




Project:
-----------------------
Project name         = Choose a name for your project, it will be used for the output files.
Type                 = (chloro/mito/mito_plant) "chloro" for chloroplast assembly, "mito" for mitochondrial assembly and 
                       "mito_plant" for mitochondrial assembly in plants.
Genome Range         = (minimum genome size-maximum genome size) The expected genome size range of the genome.
                       Default value for mito: 12000-20000 / Default value for chloro: 120000-200000
                       If the expected size is know, you can lower the range, this can be useful when there is a repetitive
                       region, what could lead to a premature circularization of the genome.
K-mer                = (integer) This is the length of the overlap between matching reads (Default: 33). 
                       If reads are shorter then 90 bp or you have low coverage data, this value should be decreased down to 
                       23. 
                       For reads longer then 101 bp, this value can be increased, but this is not necessary.
Max memory           = You can choose a max memory usage, suitable to automatically subsample the data or when you have  
                       limited                      
                       memory capacity. If you have sufficient memory, leave it blank, else write your available memory in GB
                       (if you have for example a 8 GB RAM laptop, put down 7 or 7.5 (don't add the unit in the config file))
Extended log         = Prints out a very extensive log, could be useful to send me when there is a problem  (0/1).
Save assembled reads = All the reads used for the assembly will be stored in seperate files; if option 2 is used, the   
                       original ids will be retained (yes/no/2)
Seed Input           = The path to the file that contains the seed sequence.
Reference (optional) = If a reference is available, you can give here the path to the fasta file.
                       The assembly will still be de novo, but references of the same genus can be used as a guide to resolve 
                       duplicated regions in the plant mitochondria or the inverted repeat in the chloroplast. 
                       References from different genus haven't beeen tested yet.
Variance detection   = If you select yes, you should also have a reference sequence (previous line). It will create a vcf 
                       file with all the variances compared to the give reference (yes/no)
Chloroplast sequence = The path to the file that contains the chloroplast sequence (Only for mito_plant mode).
                       You have to assemble the chloroplast before you assemble the mitochondria of plants!

Dataset 1:
-----------------------
Read Length          = The read length of your reads.
Insert size          = Total insert size of your paired end reads, it doesn't have to be accurate but should be close enough.
Platform             = illumina/ion - The performance on Ion Torrent data is significantly lower
Single/Paired        = PE/SE
Combined reads       = The path to the file that contains the combined reads (forward and reverse in 1 file)
Forward reads        = The path to the file that contains the forward reads (not necessary when there is a merged file)
Reverse reads        = The path to the file that contains the reverse reads (not necessary when there is a merged file)

Heteroplasmy:
-----------------------
MAF                  = (0.007-0.49) Minor Allele Frequency: If you want to detect heteroplasmy, first assemble the genome 
                       without this option. Then give the resulting sequence as a reference and as a seed input. And give the 
                       minimum minor allele frequency for this option (0.01 will detect heteroplasmy of >1%)
HP exclude list      = Option not yet available  
PCR-free             = (yes/no) If you have a PCR-free library write yes

Optional:
-----------------------
Insert size auto     = (yes/no) This will finetune your insert size automatically (Default: yes)
Insert Range         = This variation on the insert size, could lower it when the coverage is very high or raise it when the
                       coverage is too low (Default: 1.9). 
Insert Range strict  = Strict variation to resolve repetitive regions (Default: 1.3).                                
Use Quality Scores   = It will take in account the quality scores, only use this when reads have low quality, like with the   
                       300 bp reads of Illumina (yes/no)

我们自己需要修改的包括:
Project name:给自己的项目起一个名字,自己可以随便起
Type: 如果是组装叶绿体需要将这一项改为 chloro
Genome Range:叶绿体基因组序列长度通常为150kb左右,这一项可以改为130,000-170,000
K-mer:一般直接用默认的39即可
Max memoryExtended log:这两项不用管
Save assembled reads:这一项如果改为yes的话会将用于组装的数据以fasta的格式保留下来。
Seed Input:种子序列的路径,软件包里提供了一个Seed_RUBP_cp.fasta文件,直接使用这个文件就可以
Reference sequence:参考序列的路径,这个参考序列是可选的,如果没有参考序列,等号后面的内容需要删除
Variance detection:这个不用管,直接空着就可以
Chloroplast sequence:组装叶绿体的时候需要把等号后面的内容删掉
Read Length Insert size Platform:这些可以在测序报告中找到,需要改为自己的
Single/Paired:好像只支持双端测序数据
Combined reads:这个可以不用管
Forward reads:第一个fastq文件的路径
Reverse reads:第二个fastq文件的路径

剩下的都可以不用管了
这个config.txt文件准备好就可以直接运行

perl NOVOPlasty3.7.2.pl -c config.txt

软件运行很快,不一会就可以拿到自己的结果了!

欢迎关注我的公众号
小明的数据分析笔记本

公众号二维码.jpg

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容