善用贝叶斯公式做决策

(以下文章部分内容来自于孤独大脑公众号的阅读体会)

贝叶斯公式想要阐述的意义是:新信息出现后, A事件的概率=A事件本身的概率 x 新信息带来的调整。简而言之, 就是看到新的证据后, 更新想法。

"新信息"在贝叶斯公式中, 代表著"已知条件"。见下图:

image.png

公式看起来稍微有点复杂, 不过不要害怕, 以下我们将一一来做拆解:

  • P(A|B)= 已知B发生后, A发生的条件概率, 也可称为A的"后验概率"(新信息B出现后, A发生的概率也会有所调整; 后验概率指的是在得到某部分"结果"信息后, 重新修正的概率)
  • P(B|A)= 已知A发生后, B发生的条件概率
  • P(A)= A的先验概率, "先验"概率指的是不考虑其他信息或条件(ex. B) 下, A发生的概率
  • P(B)= B的先验概率

可以再拓展一下:


image.png
  • P(B|A')= 已知非A, B发生的条件概率
  • P(A)= 非A的先验概率

以一个比较经典的例子来展示计算过程:

  • P(a)=被检测者患病的概率=0.1%
  • P(a')=被检测未者患病的概率=99.9%
  • P(b|a)=已知患病的情况下检测为阳性的概率=99%
  • P(b|a')=已知未患病的情况下检测为阳性的概率=1%

现在, 从人群中随机抽一个人去检测,医院给出的检测结果为阳性,那么这个人实际得病的概率是多少?

我们要算的是P(a|b)=0.990.001/(0.990.001+0.01*0.999)=9%

用可视化的面积展示看起来会更直观一些:

image.png

从上图可知, 蓝色的面积/(蓝色+黄色+绿色中属于阳性)的面积, 就是我们要的答案。

贝叶斯定理本质上是一个很简单的规则:

当你收到新的论据(B)时, 它会用来改变你对某个假设的信任度。

 --如果论据和假设一致, 则假设成立的概率上升
 --反之则下降

你首先赋予某个事件一个"先验概率", 然后通过新证据来修正, 得到一个"后验概率", 然后把这个"后验概率"变成新的"先验概率", 再做一次修正, 如此循环往复......

这也就是机器学习训练模型的最朴实的基础算法。神经网络最重要的用途是分类; 分类器的输入是一个数值向量,作为类的特征。

我们把搜集到的数值向量做分区, 并且画出一条分界线, 以后新的向量进来, 可以直接区分到底是A还是A' 。而所谓的神经元, 就是一个分类器: 一个n-1维超平面把n维空间一分为二,两边分属不同的两类。

一份数据经过神经元大刀一挥, 就可把类型一分为二。即使是一个多维空间, 只要砍足够多刀, 也能够对一些复杂的函数和空间分布做出解释。

我们先选择一个判断条件, 可以是一条线/平面/超平面, 然后把样本一个个拿过来, 如果这条直线分错了, 说明这个点分错边了, 这时候我们可以动态挪一下判断的线, 让样本跑到直线正确的一侧。因此训练神经元的过程就是这条直线不断在跳舞,最终跳到两个类之间的竖直线位置。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考...
    zhoulujun阅读 9,438评论 0 20
  • 专业考题类型管理运行工作负责人一般作业考题内容选项A选项B选项C选项D选项E选项F正确答案 变电单选GYSZ本规程...
    小白兔去钓鱼阅读 8,970评论 0 13
  • 姓名:张艺伦 学号:17011210282 转载自:https://zhuanlan.zhihu.com/p/2...
    DZNGGZGY阅读 4,190评论 0 6
  • 你住在我的心里,时间越老,我越把你疼惜…… 因为有你,我知道了一些特殊的日子的重要。 开始牢记您的生日,开始记得中...
    f74245ad6124阅读 543评论 0 1
  • 鬓霜碎履坑洼路,下弦月、山如故。残柳依河桥影处。朦胧秋色,吹鞭遙诉,故剑凌空舞。谁知归雁孤鸣苦,人在高原恨无数。浊...
    岭南yl阅读 550评论 2 13